ﻻ يوجد ملخص باللغة العربية
We study the dynamic and metastable properties of the fully connected Ising $p$-spin model with finite number of variables. We define trapping energies, trapping times and self correlation functions and we analyse their statistical properties in comparison to the predictions of trap models.
We study the low temperature out of equilibrium Monte Carlo dynamics of the disordered Ising $p$-spin Model with $p=3$ and a small number of spin variables. We focus on sequences of configurations that are stable against single spin flips obtained by
Critical slowing down dynamics of supercooled glass-forming liquids is usually understood at the mean-field level in the framework of Mode Coupling Theory, providing a two-time relaxation scenario and power-law behaviors of the time correlation funct
We perform numerical simulations of a long-range spherical spin glass with two and three body interaction terms. We study the gradient descent dynamics and the inherent structures found after a quench from initial conditions, well thermalized at temp
All higher-spin s >= 1/2 Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found th
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic