ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of e-e scattering on the temperature dependence of the resistance of a classical ballistic point contact in a two-dimensional electron system

187   0   0.0 ( 0 )
 نشر من قبل Vadim S. Khrapai
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally investigate the temperature (T) dependence of the resistance of a classical ballistic point contact (PC) in a two-dimensional electron system (2DES). The split-gate PC is realized in a high-quality AlGaAs/GaAs heterostructure. The PC resistance is found to drop by more than 10% as T is raised from 0.5 K to 4.2 K. In the absence of a magnetic field, the T dependence is roughly linear below 2 K and tends to saturate at higher T. Perpendicular magnetic fields on the order of a few 10 mT suppress the T-dependent contribution dR. This effect is more pronounced at lower temperatures, causing a crossover to a nearly parabolic T dependence in a magnetic field. The normalized magnetic field dependencies dR(B) permit an empiric single parameter scaling in a wide range of PC gate voltages. These observations give strong evidence for the influence of electron-electron (e-e) scattering on the resistance of ballistic PCs. Our results are in qualitative agreement with a recent theory of the e-e scattering based T dependence of the conductance of classical ballistic PCs [ Phys. Rev. Lett. 101 216807 (2008) and Phys. Rev. B 81 125316 (2010)].



قيم البحث

اقرأ أيضاً

For metallic point contacts with Be and Al the magnetoquantum oscillations in the contact resistance have been investigated as a function of the applied voltage over the contact. For one set of point contacts the oscillation amplitude is found to var y nonmonotonously with the applied voltage with similarities to the point-contact spectrum of the electron-phonon interaction. The other part of the investigated point contacts shows a decrease of the oscillation amplitude with increasing bias voltage. For the understanding of the voltage dependence of the amplitude of the point-contact magnetoresistance oscillations the influence of nonequilibrium phonons generated by the ballistically injected electrons will be discussed.
107 - S. Hugger , M. Cerchez , H. Xu 2007
Magnetic barriers in two-dimensional electron gases are shifted in B space by homogeneous, perpendicular magnetic fields. The magnetoresistance across the barrier shows a characteristic asymmetric dip in the regime where the polarity of the homogeneo us magnetic field is opposite to that one of the magnetic barrier. The measurements are in quantitative agreement with semiclassical simulations, which reveal that the magnetoresistance originates from the interplay of snake orbits with E x B drift at the edges of the Hall bar and with elastic scattering.
We study coherent transport and bound-state formation of Bogoliubov quasiparticles in a high-mobility In$_{0.75}%$Ga$_{0.25}$As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum $2e^{2}/h$ at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling--a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatters. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.
The low-temperature($4.2<T<12.5$ K) magnetotransport ($B<2$ T) of two-dimensional electrons occupying two subbands (with energy $E_1$ and $E_2$) is investigated in GaAs single quantum well with AlAs/GaAs superlattice barriers. Two series of Shubnikov -de Haas oscillations are found to be accompanied by magnetointersubband (MIS) oscillations, periodic in the inverse magnetic field. The period of the MIS oscillations obeys condition $Delta_{12}=(E_2-E_1)=k cdot hbar omega_c$, where $Delta_{12}$ is the subband energy separation, $omega_c$ is the cyclotron frequency, and $k$ is the positive integer. At $T$=4.2 K the oscillations manifest themselves up to $k$=100. Strong temperature suppression of the magnetointersubband oscillations is observed. We show that the suppression is a result of electron-electron scattering. Our results are in good agreement with recent experiments, indicating that the sensitivity to electron-electron interaction is the fundamental property of magnetoresistance oscillations, originating from the second-order Dingle factor.
We have investigated within the theory of Fermi liquid dependence of Coulomb drag current in a passive quantum wire on the applied voltage $V$ across an active wire and on the temperature $T$ for any values of $eV/k_BT$. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We come to conclusions that 1) within a certain temperature interval the drag current can be a descending function of the temperature $T$; 2) the experimentally observed temperature dependence $T^{-0.77}$ of the drag current can be interpreted within the framework of Fermi liquid theory; 3) at relatively high applied voltages the drag current as a function of the applied voltage saturates; 4) the screening of the electron potential by metallic gate electrodes can be of importance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا