ﻻ يوجد ملخص باللغة العربية
The low-temperature($4.2<T<12.5$ K) magnetotransport ($B<2$ T) of two-dimensional electrons occupying two subbands (with energy $E_1$ and $E_2$) is investigated in GaAs single quantum well with AlAs/GaAs superlattice barriers. Two series of Shubnikov-de Haas oscillations are found to be accompanied by magnetointersubband (MIS) oscillations, periodic in the inverse magnetic field. The period of the MIS oscillations obeys condition $Delta_{12}=(E_2-E_1)=k cdot hbar omega_c$, where $Delta_{12}$ is the subband energy separation, $omega_c$ is the cyclotron frequency, and $k$ is the positive integer. At $T$=4.2 K the oscillations manifest themselves up to $k$=100. Strong temperature suppression of the magnetointersubband oscillations is observed. We show that the suppression is a result of electron-electron scattering. Our results are in good agreement with recent experiments, indicating that the sensitivity to electron-electron interaction is the fundamental property of magnetoresistance oscillations, originating from the second-order Dingle factor.
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in
We study the electron spin relaxation in both symmetric and asymmetric GaAs/AlGaAs quantum wells (QWs) grown on (110) substrates in an external magnetic field B applied along the QW normal. The spin polarization is induced by circularly polarized lig
Shubnikov de Haas resistance oscillations of highly mobile two dimensional helical electrons propagating on a conducting surface of strained HgTe 3D topological insulator are studied in magnetic fields B tilted by angle $theta$ from the normal to the
We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As quantum wells grown by molecular beam epitaxy on InP subst
We have studied experimentally and theoretically the influence of electron-electron collisions on the propagation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up to the Fermi energy. We find that