ترغب بنشر مسار تعليمي؟ اضغط هنا

Can galactic outflows explain the properties of Ly-alpha emitters?

68   0   0.0 ( 0 )
 نشر من قبل Alvaro Orsi Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alvaro Orsi




اسأل ChatGPT حول البحث

We study the properties of Ly-alpha emitters in a cosmological framework by computing the escape of Ly-alpha photons through galactic outflows. We combine the GALFORM semi-analytical model of galaxy formation with a Monte Carlo Ly-alpha radiative transfer code. The properties of Ly-alpha emitters at 0<z<7 are predicted using two outflow geometries: a Shell of neutral gas and a Wind ejecting material, both expanding at constant velocity. We characterise the differences in the Ly-alpha line profiles predicted by the two outflow geometries in terms of their width, asymmetry and shift from the line centre for a set of outflows with different hydrogen column densities, expansion velocities and metallicities. In general, the Ly-alpha line profile of the Shell geometry is broader and more asymmetric, and the Ly-alpha escape fraction is lower than with the Wind geometry for the same set of parameters. In order to implement the outflow geometries in the semi-analytical model GALFORM, a number of free parameters in the outflow model are set by matching the luminosity function of Ly-alpha emitters over the whole observed redshift range. The models are consistent with the observationally inferred Ly-alpha escape fractions, equivalent width distributions and with the shape of the Ly-alpha line from composite spectra. Interestingly, our predicted UV luminosity function of Ly-alpha emitters and the fraction of Ly-alpha emitters in Lyman-break galaxy samples at high redshift are in partial agreement with observations. Attenuation of the Ly-alpha line by the presence of a neutral intergalactic medium at high redshift could be responsible for this disagreement. We predict that Ly-alpha emitters constitute a subset of the galaxy population with lower metallicities, lower instantaneous star formation rates and larger sizes than the overall population at the same UV luminosity.

قيم البحث

اقرأ أيضاً

90 - S. Baek , A. Ferrara , B. Semelin 2012
We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.
In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiati on from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
We carried out extended spectroscopic confirmations of Ly-alpha emitters (LAEs) at z=6.5 and 5.7 in the Subaru Deep Field. Now, the total number of spectroscopically confirmed LAEs is 45 and 54 at z=6.5 and 5.7, respectively, and at least 81% (70%) o f our photometric candidates at z=6.5 (5.7) have been spectroscopically identified as real LAEs. We made careful measurements of the Ly-alpha luminosity, both photometrically and spectroscopically, to accurately determine the Ly-alpha and rest-UV luminosity functions (LFs). The substantially improved evaluation of the Ly-alpha LF at z=6.5 shows an apparent deficit from z=5.7 at least at the bright end, and a possible decline even at the faint end, though small uncertainties remain. The rest-UV LFs at z=6.5 and 5.7 are in good agreement, at least at the bright end, in clear contrast to the differences seen in the Ly-alpha LF. These results imply an increase in the neutral fraction of the intergalactic medium from z=5.7 to 6.5. The rest-frame equivalent width (EW_0) distribution at z=6.5 seems to be systematically smaller than z=5.7, and it shows an extended tail toward larger EW_0. The bright end of the rest-UV LF can be reproduced from the observed Ly-alpha LF and a reasonable EW_0-UV luminosity relation. Integrating this rest-UV LF provides the first measurement of the contribution of LAEs to the photon budget required for reionization. The derived UV LF suggests that the fractional contribution of LAEs to the photon budget among Lyman break galaxies significantly increases towards faint magnitudes. Low-luminosity LAEs could dominate the ionizing photon budget, though this inference depends strongly on the uncertain faint-end slope of the Ly-alpha LF.
We present rest-frame optical spectra of 60 faint ($R_{AB}sim 27$; $Lsim0.1 L_*$) Ly$alpha$-selected galaxies (LAEs) at $zapprox2.56$. The average LAE is consistent with the extreme low-metallicity end of the continuum-selected galaxy distribution at $zapprox2-3$. In particular, the LAEs have extremely high [OIII] $lambda$5008/H$beta$ ratios (log([OIII]/H$beta$) $sim$ 0.8) and low [NII] $lambda$6585/H$alpha$ ratios (log([NII]/H$alpha$) $<-1.15$). Using the [OIII] $lambda$4364 auroral line, we find that the star-forming regions in faint LAEs are characterized by high electron temperatures ($T_eapprox1.8times10^4$K), low oxygen abundances (12 + log(O/H) $approx$ 8.04, $Z_{neb}approx0.22Z_odot$), and high excitations with respect to more luminous galaxies. Our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) $approx$ 6.9$-$7.4 ($Z_{neb}approx0.02-0.05Z_odot$). We interpret these observations in light of new models of stellar evolution (including binary interactions). We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate physical trends accompanying Ly$alpha$ emission across the largest current sample of combined Ly$alpha$ and rest-optical galaxy spectroscopy, including 60 faint LAEs and 368 more luminous galaxies at similar redshifts. We find that Ly$alpha$ emission is strongly correlated with nebular excitation and ionization and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content.
154 - P. Hibon 2009
The Ly-alpha luminosity function (LF) of high-redshift Ly-alpha emitters (LAEs) is one of the few observables of the re-ionization epoch accessible to date with 8-10 m class telescopes. The evolution with redshift allows one to constrain the evolutio n of LAEs and their role in re-ionizing the Universe at the end of the Dark Ages. We have performed a narrow-band imaging program at 1.06 microns at the CFHT, targeting Ly-alpha emitters at redshift z ~ 7.7 in the CFHT-LS D1 field. From these observations we have derived a photometric sample of 7 LAE candidates at z ~ 7.7. We derive luminosity functions for the full sample of seven objects and for sub-samples of four objects. If the brightest objects in our sample are real, we infer a luminosity function which would be difficult to reconcile with previous work at lower redshift. More definitive conclusions will require spectroscopic confirmation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا