ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the gradual transition from one-dimensional to two-dimensional Anderson localization

84   0   0.0 ( 0 )
 نشر من قبل Yaroslav Kartashov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the gradual transition from one-dimensional to two-dimensional Anderson localization upon transformation of the dimensionality of disordered waveguide arrays. An effective transition from one- to two-dimensional system is achieved by increasing the number of rows forming the arrays. We observe that, for a given disorder level, Anderson localization becomes weaker with increasing number of rows, hence the effective dimension.

قيم البحث

اقرأ أيضاً

We observe experimentally two-dimensional solitons in superlattices comprising alternating deep and shallow waveguides fabricated via the femtosecond laser direct writing technique. We find that the symmetry of linear diffraction patterns as well as soliton shapes and threshold powers largely differ for excitations centered on deep and shallow sites. Thus, bulk and surface solitons centered on deep waveguides require much lower powers than their counterparts on shallow sites.
We report Anderson localization in two-dimensional optical waveguide arrays with disorder in waveguide separation introduced along one axis of the array, in an uncorrelated fashion for each waveguide row. We show that the anisotropic nature of such d isorder induces a strong localization along both array axes. The degree of localization in the cross-axis remains weaker than that in the direction in which disorder is introduced. This effect is illustrated both theoretically and experimentally.
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu ral duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
We study the interplay of disorder and correlation in the one-dimensional hole-doped Hubbard-model with disorder (Anderson-Hubbard model) by using the density-matrix renormalization group method. Concentrating on the doped-hole density profile, we fi nd in a large $U/t$ regime that the clean system exhibits a simple fluid-like behavior whereas finite disorders create locally Mott regions which expand their area with increasing the disorder strength contrary to the ordinary sense. We propose that such an anomalous Mott phase formation assisted by disorder is observable in atomic Fermi gases by setup of the box shape trap.
In order to study an interplay of disorder, correlation, and spin imbalance on antiferromagnetism, we systematically explore the ground state of one-dimensional spin-imbalanced Anderson-Hubbard model by using the density-matrix renormalization group method. We find that disorders localize the antiferromagnetic spin density wave induced by imbalanced fermions and the increase of the disorder magnitude shrinks the areas of the localized antiferromagnetized regions. Moreover, the antiferromagnetism finally disappears above a large disorder. These behaviors are observable in atomic Fermi gases loaded on optical lattices and disordered strongly-correlated chains under magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا