ﻻ يوجد ملخص باللغة العربية
In order to study an interplay of disorder, correlation, and spin imbalance on antiferromagnetism, we systematically explore the ground state of one-dimensional spin-imbalanced Anderson-Hubbard model by using the density-matrix renormalization group method. We find that disorders localize the antiferromagnetic spin density wave induced by imbalanced fermions and the increase of the disorder magnitude shrinks the areas of the localized antiferromagnetized regions. Moreover, the antiferromagnetism finally disappears above a large disorder. These behaviors are observable in atomic Fermi gases loaded on optical lattices and disordered strongly-correlated chains under magnetic field.
We study the interplay of disorder and correlation in the one-dimensional hole-doped Hubbard-model with disorder (Anderson-Hubbard model) by using the density-matrix renormalization group method. Concentrating on the doped-hole density profile, we fi
We derive the disorder vs. doping phase diagram of the doped Hubbard model via Dynamical Mean Field Theory combined with Typical Medium Theory, which allows the description of both Mott (correlation driven) and Anderson (disorder driven) metal-insula
We study the one-dimensional Anderson-Hubbard model using the density-matrix renormalization group method. The influence of disorder on the Tomonaga-Luttinger liquid behavior is quantitatively discussed. Based on the finite-size scaling analysis of d
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-fillin
We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasi-periodic potential by means of the density-matrix renormalization group technique. This model describes the physics of cold atoms loaded in an optical lattice in the