ﻻ يوجد ملخص باللغة العربية
Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.
We investigate in a microscopical transport model the evolution of conical structures originating from the supersonic projectile moving through the matter of ultrarelativistic particles. Using different scenarios for the interaction between projectil
Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system $eta/s ap
We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Ch
The formation of Mach cones is studied in a full $(3+1)$-dimensional setup of ultrarelativistic heavy-ion collisions, considering a transverse and longitudinal expanding medium at Relativistic Heavy-Ion Collider energies. For smooth initial condition
The time evolution of Mach-like structure (the splitting of the away side peak in di-hadron $Deltaphi$ correlation) is presented in the framework of a dynamical partonic transport model. With the increasing of the lifetime of partonic matter, Mach-li