ﻻ يوجد ملخص باللغة العربية
We investigate in a microscopical transport model the evolution of conical structures originating from the supersonic projectile moving through the matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Furthermore, the two-particle correlations for different viscosities are extracted from the numerical calculations and we compare them to an analytical approximation. In addition, by adjusting he cross section we investigate the influence of the viscosity to the structure of Mach cones.
Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between proj
Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system $eta/s ap
The formation of Mach cones is studied in a full $(3+1)$-dimensional setup of ultrarelativistic heavy-ion collisions, considering a transverse and longitudinal expanding medium at Relativistic Heavy-Ion Collider energies. For smooth initial condition
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by vary
Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung $2 leftrightarrow 3$ processes. Within the same framework quenching