ﻻ يوجد ملخص باللغة العربية
The time evolution of Mach-like structure (the splitting of the away side peak in di-hadron $Deltaphi$ correlation) is presented in the framework of a dynamical partonic transport model. With the increasing of the lifetime of partonic matter, Mach-like structure can be produced and developed by strong parton cascade process. Not only the splitting parameter but also the number of associated hadrons ($N_{h}^{assoc}$) increases with the lifetime of partonic matter and partonic interaction cross section. Both the explosion of $N_{h}^{assoc}$ following the formation of Mach-like structure and the corresponding results of three-particle correlation support that a partonic Mach-like shock wave can be formed by strong parton cascade mechanism. Therefore, the studies about Mach-like structure may give us some critical information, such as the lifetime of partonic matter and hadronization time.
In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and
In a framework of a multi-phase transport model with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles in Au + Au collisions at $sqrt{s_{NN}}$ = 200 GeV/$c$ have been studied
A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both ela
We study the sensitivities of the directed flow in Au+Au collisions on the equation of state (EoS), employing the transport theoretical model JAM. The EoS is modified by introducing a new collision term in order to control the pressure of a system by