ﻻ يوجد ملخص باللغة العربية
As an increasing number of well measured type Ia supernovae (SNe Ia) become available, the statistical uncertainty on w has been reduced to the same size as the systematic uncertainty. The statistical error will decrease further in the near future, and hence the improvement of systematic uncertainties needs to be addressed, if further progress is to be made. We study how uncertainties in the primary reference spectrum - which are a main contribution to the systematic uncertainty budget - affect the measurement of the Dark Energy equation of state parameter w from SNe Ia. The increasing number of SN observations can be used to reduce the uncertainties by including perturbations of the reference spectrum as nuisance parameters in a cosmology fit, thus self-calibrating the Hubble diagram. We employ this method to real SNe data for the first time and find the perturbations of the reference spectrum consistent with zero at the 1%-level. For future surveys we estimate that ~3500 SNe will be required for our method to outperform the standard method of deriving the cosmological parameters.
Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three di
As soon as their extragalactic origins were established, the hope to make Gamma - Ray Bursts (GRBs) standardizeable candles to probe the very high - z universe has opened the search for scaling relations between redshift independent observable quanti
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $Lambda$CDM cosmology. Here we show that the Laser Interfero
Gamma ray bursts (GRBs) have recently attracted much attention as a possible way to extend the Hubble diagram to very high redshift. To this aim, the luminosity (or isotropic emitted energy) of a GRB at redshift z must be evaluated from a correlation
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 < z < 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM)