ﻻ يوجد ملخص باللغة العربية
As soon as their extragalactic origins were established, the hope to make Gamma - Ray Bursts (GRBs) standardizeable candles to probe the very high - z universe has opened the search for scaling relations between redshift independent observable quantities and distance dependent ones. Although some remarkable success has been achieved, the empirical correlations thus found are still affected by a significant intrinsic scatter which downgrades the precision in the inferred GRBs Hubble diagram. We investigate here whether this scatter may come from fitting together objects belonging to intrinsically different classes. To this end, we rely on a cladistics analysis to partition GRBs in homogenous families according to their rest frame properties. Although the poor statistics prevent us from drawing a definitive answer, we find that both the intrinsic scatter and the coefficients of the $E_{peak}$,-,$E_{iso}$ and $E_{peak}$,-,$L$ correlations significantly change depending on which subsample is fitted. It turns out that the fit to the full sample leads to a scaling relation which approximately follows the diagonal of the region delimited by the fits to each homogenous class. We therefore argue that a preliminary identification of the class a GRB belongs to is necessary in order to select the right scaling relation to be used in order to not bias the distance determination and hence the Hubble diagram.
As an increasing number of well measured type Ia supernovae (SNe Ia) become available, the statistical uncertainty on w has been reduced to the same size as the systematic uncertainty. The statistical error will decrease further in the near future, a
Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three di
Gamma-ray bursts are usually classified through their high-energy emission into short-duration and long-duration bursts, which presumably reflect two different types of progenitors. However, it has been shown on statistical grounds that a third, inte
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 < z < 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM)
Gamma-Ray Bursts can provide information about star formation at high redshifts. Even in the absence of a optical/near-infrared/radio afterglow, the high detection rate of X-ray afterglows by swift/XRT and its localization precision of 2-3 arcsec fac