ﻻ يوجد ملخص باللغة العربية
Gamma ray bursts (GRBs) have recently attracted much attention as a possible way to extend the Hubble diagram to very high redshift. To this aim, the luminosity (or isotropic emitted energy) of a GRB at redshift z must be evaluated from a correlation with a distance independent quantity so that one can then solve for the luminosity distance D_L(z) and hence the distance modulus mu(z). Averaging over five different two parameters correlations and using a fiducial cosmological model to calibrate them, Schaefer (2007) has compiled a sample of 69 GRBs with measured mu(z) which has since then been widely used to constrain cosmological parameters. We update here that sample by many aspects. First, we add a recently found correlation for the X - ray afterglow and use a Bayesian inspired fitting method to calibrate the different GRBs correlations known insofar assuming a fiducial LCDM model in agreement with the recent WMAP5 data. Averaging over six correlations, we end with a new GRBs Hubble diagram comprising 83 objects. We also extensively explore the impact of varying the fiducial cosmological model considering how the estimated mu(z) change as a function of the $(Omega_M, w_0, w_a)$ parameters of the Chevallier - Polarski - Linder phenomenological dark energy equation of state. In order to avoid the need of assuming an {it a priori} cosmological model, we present a new calibration procedure based on a model independent local regression estimate of mu(z) using the Union SNeIa sample to calibrate the GRBs correlations. This finally gives us a GRBs Hubble diagram made out of 69 GRBs whose estimated distance modulus mu(z) is almost independent on the underlying cosmological model.
Thanks to their enormous energy release, Gamma Rays Bursts (GRBs) have recently attracted a lot of interest to probe the Hubble diagram (HD) deep into the matter dominated era and hence complement Type Ia Supernovae (SNeIa). We consider here three di
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 < z < 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM)
In the current framework, the standard parametrization of our Universe is the so-called Lambda Cold Dark Matter ({Lambda}CDM) model. Recently, Risaliti & Lusso (2019) have shown a ~4{sigma} tension with the {Lambda}CDM model through a model-independe
We present a catalogue with the properties of all the bursts detected and localized by the IBIS instrument onboard the INTEGRAL satellite from November 2002 to September 2008. The sample is composed of 56 bursts, corresponding to a rate of ~ 0.8 GRB
Gamma-ray bursts (GRBs) being the most luminous among known cosmic objects carry an essential potential for cosmological studies if properly used as standard candles. In this paper we test with GRBs the cosmological predictions of the Gurzadyan-Xue (