ﻻ يوجد ملخص باللغة العربية
We present the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to two areas of investigation: precision QCD calculations of all three of us as needed for LHC physics and the resummed quantum gravity realization by one of us (B.F.L.W.) of Feynmans formulation of Einsteins theory of general relativity. We discuss recent results as they relate to experimental observations. There is reason for optimism in the attendant comparison of theory and experiment.
We present recent developments in the application of exact amplitude-based resummation methods in the confrontation between precision theory and recent experimental results. As a consequence, we argue that these methods open the way to 1% total theor
Some recent results obtained by the author and collaborators about QFT in asymptotically flat spacetimes at null infinity are summarized and reviewed. In particular it is focused on the physical properties of ground states in the bulk induced by the BMS-invariant state defined at null infinity.
We consider near-critical two-dimensional statistical systems with boundary conditions inducing phase separation on the strip. By exploiting low-energy properties of two-dimensional field theories, we compute arbitrary $n$-point correlation of the or
We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained
We develop a conformal-field theory approach for investigation of the quantum charge-, heat- and thermoelectric- transport through a quantum impurity fine tuned to a non-Fermi liquid regime. The non-Fermi-liquid operational mode is associated with th