ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean-field closure parameters for passive scalar turbulence

90   0   0.0 ( 0 )
 نشر من قبل Petri K\\\"apyl\\\"a
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Direct numerical simulations of isotropically forced homogeneous stationary turbulence with an imposed passive scalar concentration gradient are compared with an analytical closure model which provides evolution equations for the mean passive scalar flux and variance. Triple correlations of fluctuations appearing in these equations are described in terms of relaxation terms proportional to the quadratic correlations. Three methods are used to extract the relaxation timescales tau_i from direct numerical simulations. Firstly, we insert the closure ansatz into our equations, assume stationarity, and solve for tau_i. Secondly, we use only the closure ansatz itself and obtain tau_i from the ratio of quadratic and triple correlations. Thirdly we remove the imposed passive scalar gradient and fit an exponential decay law to the solution. We vary the Reynolds (Re) and Peclet (Pe) numbers while keeping their ratio at unity and the degree of scale separation and find for large Re fair correspondence between the different methods. The ratio of the turbulent relaxation time of passive scalar flux to the turnover time of turbulent eddies is of the order of three, which is in remarkable agreement with earlier work. Finally we make an effort to extract the relaxation timescales relevant for the viscous and diffusive effects. We find two regimes which are valid for small and large Re, respectively, but the dependence of the parameters on scale separation suggests that they are not universal.



قيم البحث

اقرأ أيضاً

The energy and flux budget (EFB) closure theory for a passive scalar (non-buoyant and non-inertial particles or gaseous admixtures) is developed for stably stratified turbulence. The physical background of the EFB turbulence closures is based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, as well as the turbulent flux of particles. The EFB turbulence closure is designed for stratified geophysical flows from neutral to very stable stratification and it implies that turbulence is maintained by the velocity shear at any stratification. In a steady-state, expressions for the turbulent flux of passive scalar and the anisotropic non-symmetric turbulent diffusion tensor are derived, and universal flux Richardson number dependencies of the components of this tensor are obtained. The diagonal component in the vertical direction of the turbulent diffusion tensor is suppressed by strong stratification, while the diagonal components in the horizontal directions are not suppressed, and they are dominant in comparison with the other components of turbulent diffusion tensor. This implies that any initially created strongly inhomogeneous particle cloud is evolved into a thin pancake in horizontal plane with very slow increase of its thickness in the vertical direction. The turbulent Schmidt number increases linearly with the gradient Richardson number. Considering the applications of these results to the atmospheric boundary-layer turbulence, the theoretical relationships are derived which allow to determine the turbulent diffusion tensor as a function of the vertical coordinate measured in the units of the local Obukhov length scale. The obtained relations are potentially useful in modelling applications of particle dispersion in the atmospheric boundary-layer turbulence and free atmosphere turbulence.
We present a statistical analysis of turbulent convection in stars within our Reynolds-Averaged Navier Stokes (RANS) framework in spherical geometry which we derived from first principles. The primary results reported in this document include: (1) an extensive set of mean-field equations for compressible, multi-species hydrodynamics, and (2) corresponding mean-field data computed from various simulation models. Some supplementary scale analysis data is also presented. The simulation data which is presented includes: (1) shell convection during oxygen burning in a 23 solar mass supernova progenitor, (2) envelope convection in a 5 solar mass red giant, (3) shell convection during the helium flash, and (4) a hydrogen injection flash in a 1.25 solar mass star. These simulations have been partially described previously in Meakin [2006], Meakin and Arnett [2007a,b, 2010], Arnett et al. [2009, 2010], Viallet et al. [2011, 2013a,b] and Mocak et al. [2009, 2011]. New data is also included in this document with several new domain and resolution configurations as well as some variations in the physical model such as convection zone depth and driving source term. The long term goal of this work is to aid in the development of more sophisticated models for treating hydrodynamic phenomena (e.g., turbulent convection) in the field of stellar evolution by providing a direct link between 3D simulation data and the mean fields which are modeled by 1D stellar evolution codes. As such, this data can be used to test previously proposed turbulence models found in the literature and sometimes used in stellar modeling. This data can also serve to test basic physical principles for model building and inspire new prescriptions for use in 1D evolution codes.
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $tau$-approach. We find that compressibility decreases the $alpha$ effect a nd the turbulent magnetic diffusivity both at small and large magnetic Reynolds numbers, Rm. Similarly, compressibility decreases the turbulent diffusivity for passive scalars both at small and large Peclet numbers, Pe. On the other hand, compressibility does not affect the effective pumping velocity of the magnetic field for large Rm, but it decreases it for small Rm. Density stratification causes turbulent pumping of passive scalars, but it is found to become weaker with increasing compressibility. No such pumping effect exists for magnetic fields. However, compressibility results in a new passive scalar pumping effect from regions of low to high turbulent intensity both for small and large Peclet numbers. It can be interpreted as compressible turbophoresis of noninertial particles and gaseous admixtures, while the classical turbophoresis effect exists only for inertial particles and causes them to be pumped to regions with lower turbulent intensity.
Near field hydrodynamic interactions are essential to determine many important emergent behaviors observed in active suspensions, but have not been successfully modeled so far. In this work we propose an effective model capable of efficiently capturi ng the essence of the near field hydrodynamic interactions, validated numerically by a pedagogic model system consisting of an E. coli and a spherical tracer. The proposed model effectively captures all the details of near field hydrodynamics through only a tensorial coefficient of resistance, which is fundamentally different from, and thus cannot be replaced by, an effective interaction of conservative nature. In a critical test case that studies the scattering angle of the bacterium-tracer pair dynamics, calculations based on the proposed model reveals a region in parameter space where the bacterium is trapped by the spherical tracer, a phenomenon that is regularly observed in experiments but cannot be explained by any existing model.
The extent of mixed regions around convective zones is one of the biggest uncertainties in stellar evolution. 1D overshooting descriptions introduce a free parameter ($f_{ov}$) that is in general not well constrained from observations. Especially in small central convective regions the value is highly uncertain due to its tight connection to the pressure scale height. Long-term multi-dimensional hydrodynamic simulations can be used to study the size of the overshooting region and the involved mixing processes. Here we show how one can calibrate an overshooting parameter by performing 2D Maestro simulations of Zero-Age-Main-Sequence stars ranging from $1.3$ to $3.5 M_odot$. The simulations cover the convective cores of the stars and a large fraction of the surrounding radiative envelope. We follow the convective flow for at least 20 convective turnover times, while the longest simulation covers 430 turnover time scales. This allows us to study how the mixing as well as the convective boundary evolve with time, and how the resulting entrainment can be interpreted in terms of overshooting parameters. We find that increasing the overshooting parameter $f_{ov}$ beyond a certain value in the initial model of our simulations, changes the mixing behaviour completely. This result can be used to put limits on the overshooting parameter. We find $0.010 < f_{ov} < 0.017$ to be in good agreement with our simulations of a $3.5 M_odot$ mass star. We also identify a diffusive mixing component due to internal gravity waves (IGW) that is active throughout the convectively stable layer, but likely overestimated in our simulations. Furthermore, applying our calibration method to simulations of less massive stars suggests a need for a mass-dependent overshooting description where the mixing in terms of the pressure scale height is reduced for small convective cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا