ﻻ يوجد ملخص باللغة العربية
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $tau$-approach. We find that compressibility decreases the $alpha$ effect and the turbulent magnetic diffusivity both at small and large magnetic Reynolds numbers, Rm. Similarly, compressibility decreases the turbulent diffusivity for passive scalars both at small and large Peclet numbers, Pe. On the other hand, compressibility does not affect the effective pumping velocity of the magnetic field for large Rm, but it decreases it for small Rm. Density stratification causes turbulent pumping of passive scalars, but it is found to become weaker with increasing compressibility. No such pumping effect exists for magnetic fields. However, compressibility results in a new passive scalar pumping effect from regions of low to high turbulent intensity both for small and large Peclet numbers. It can be interpreted as compressible turbophoresis of noninertial particles and gaseous admixtures, while the classical turbophoresis effect exists only for inertial particles and causes them to be pumped to regions with lower turbulent intensity.
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on a combined effect of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A couple
Compressibility effects in a turbulent transport of temperature field are investigated applying the quasi-linear approach for small Peclet numbers and the spectral $tau$ approach for large Peclet numbers. Compressibility of a fluid flow reduces the t
In this paper we examine the role of weak magnetic fields in breaking Kelvins circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low $Pm$) fluid. We co
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross-sectional shapes, including regular polygons and smoothed corner ducts ori
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by study