ﻻ يوجد ملخص باللغة العربية
The energy and flux budget (EFB) closure theory for a passive scalar (non-buoyant and non-inertial particles or gaseous admixtures) is developed for stably stratified turbulence. The physical background of the EFB turbulence closures is based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, as well as the turbulent flux of particles. The EFB turbulence closure is designed for stratified geophysical flows from neutral to very stable stratification and it implies that turbulence is maintained by the velocity shear at any stratification. In a steady-state, expressions for the turbulent flux of passive scalar and the anisotropic non-symmetric turbulent diffusion tensor are derived, and universal flux Richardson number dependencies of the components of this tensor are obtained. The diagonal component in the vertical direction of the turbulent diffusion tensor is suppressed by strong stratification, while the diagonal components in the horizontal directions are not suppressed, and they are dominant in comparison with the other components of turbulent diffusion tensor. This implies that any initially created strongly inhomogeneous particle cloud is evolved into a thin pancake in horizontal plane with very slow increase of its thickness in the vertical direction. The turbulent Schmidt number increases linearly with the gradient Richardson number. Considering the applications of these results to the atmospheric boundary-layer turbulence, the theoretical relationships are derived which allow to determine the turbulent diffusion tensor as a function of the vertical coordinate measured in the units of the local Obukhov length scale. The obtained relations are potentially useful in modelling applications of particle dispersion in the atmospheric boundary-layer turbulence and free atmosphere turbulence.
We have advanced the energy and flux budget (EFB) turbulence closure theory that takes into account a two-way coupling between internal gravity waves (IGW) and the shear-free stably stratified turbulence. This theory is based on the budget equation f
In this paper we advance physical background of the energy- and flux-budget turbulence closure based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation
Direct numerical simulations of isotropically forced homogeneous stationary turbulence with an imposed passive scalar concentration gradient are compared with an analytical closure model which provides evolution equations for the mean passive scalar
In this study, the stability dependence of turbulent Prandtl number ($Pr_t$) is quantified via a novel and simple analytical approach. Based on the variance and flux budget equations, a hybrid length scale formulation is first proposed and its functi
The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of velocity gradients computed from in situ measurements are used to show that the anomalous s