ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust dx2-y2 pairing symmetry in high-temperature superconductors

349   0   0.0 ( 0 )
 نشر من قبل J. R. Kirtley
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. C. Tsuei




اسأل ChatGPT حول البحث

Although initially quite controversial, it has been widely accepted that the Cooper pairs in optimally doped cuprate superconductors have predominantly dx2-y2 wavefunction symmetry. The controversy has now shifted to whether the high-Tc pairing symmetry changes away from optimal doping. Here we present phase-sensitive tricrystal experiments on three cuprate systems: Y0.7Ca0.3Ba2Cu3O7-x (Ca-doped Y-123), La2-xSrxCuO4 (La-214) and Bi2Sr2CaCu2O8+x (Bi-2212),with doping levels covering the underdoped, optimal and overdoped regions. Our work implies that time-reversal invariant, predominantly dx2-y2 pairing symmetry is robust over a large variation in doping, and underscores the important role of on-site Coulomb repulsion in the making of high-temperature superconductivity.



قيم البحث

اقرأ أيضاً

Even after 25 years of research the pairing mechanism and - at least for electron doped compounds - also the order parameter symmetry of the high transition temperature (high-Tc) cuprate superconductors is still under debate. One of the reasons is th e complex crystal structure of most of these materials. An exception are the infinite layer (IL) compounds consisting essentially of CuO2 planes. Unfortunately, these materials are difficult to grow and, thus, there are only few experimental investigations. Recently, we succeeded in depositing high quality films of the electron doped IL compound Sr1-xLaxCuO2 (SLCO), with x approximately 0.15, and on the fabrication of well-defined grain boundary Josephson junctions (GBJs) based on such SLCO films. Here we report on a phase sensitive study of the superconducting order parameter based on GBJ SQUIDs from a SLCO film grown on a tetracrystal substrate. Our results show that also the parent structure of the high-Tc cuprates has dx2-y2-wave symmetry, which thus seems to be inherent to cuprate superconductivity.
The pairing symmetry of the newly proposed cobalt high temperature (high-$T_c$) superconductors formed by vertex shared cation-anion tetrahedral complexes is studied by the methods of mean field, random phase approximation (RPA) and functional renorm alization group (FRG) analysis. The results of all these methods show that the $d_{x^2-y^2}$ pairing symmetry is robustly favored near half filling. The RPA and FRG methods, which are valid in weak interaction regions, predict that the superconducting state is also strongly orbital selective, namely the $d_{x^2-y^2}$ orbital that has the largest density near half filling among the three $t_{2g}$ orbitals dominates superconducting pairing. These results suggest that the new materials, if synthesized, can provide indisputable test to high-$T_c$ pairing mechanism and the validity of different theoretical methods.
177 - A. S. Alexandrov 2011
Along with some other researches we have realised that the true origin of high-temperature superconductivity should be found in the strong Coulomb repulsion combined with a significant electronphonon interaction. Both interactions are strong (on the order of 1 eV) compared with the low Fermi energy of doped carries which makes the conventional BCS-Eliashberg theory inapplicable in cuprates and related doped insulators. Based on our recent analytical and numerical results I argue that high-temperature superconductivity from repulsion is impossible for any strength of the Coulomb interaction. Major steps of our alternative polaronic theory are outlined starting from the generic Hamiltonian with the unscreened (bare) Coulomb and electron-phonon interactions accounting for critical temperatures of high-temperature superconductors without any adjustable parameters.
409 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
The t-t-t-J model of electrons interacting with three phonon modes (breathing, apical breathing, and buckling) is considered. The wave-vector dependence of the matrix elements of the electron-phonon interaction leads to opposite contributions to the pairing potential with the d-symmetry: the buckling mode facilitates electron pairing, while the breathing mode suppresses it. As a result, the critical temperature of La{2 - x}Sr{x}CuO{4} that is associated with the magnetic mechanism is lowered when phonons are taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا