ترغب بنشر مسار تعليمي؟ اضغط هنا

In search for the pairing glue in cuprates by non-equilibrium optical spectroscopy

119   0   0.0 ( 0 )
 نشر من قبل Claudio Giannetti
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In strongly correlated materials the electronic and optical properties are significantly affected by the coupling of fermionic quasiparticles to different degrees of freedom, such as lattice vibrations and bosonic excitations of electronic origin. Broadband ultrafast spectroscopy is emerging as the premier technique to unravel the subtle interplay between quasiparticles and electronic or phononic collective excitations, by their different characteristic timescales and spectral responses. By investigating the femtosecond dynamics of the optical properties of Y-Bi2212 crystals over the 0.5-2 eV energy range, we disentangle the electronic and phononic contributions to the generalized electron-boson Eliashberg function, showing that the spectral distribution of the electronic excitations, such as spin fluctuations and current loops, and the strength of their interaction with quasiparticles can account for the high critical temperature of the superconducting phase transition. Finally, we discuss how the use of this technique can be extended to the underdoped region of the phase diagram of cuprates, in which a pseudogap in the quasiparticle density of states opens. The microscopic modeling of the interaction of ultrashort light pulses with unconventional superconductors will be one of the key challenges of the next-years materials science, eventually leading to the full understanding of the role of the electronic correlations in controlling the dynamics on the femtosecond timescale.



قيم البحث

اقرأ أيضاً

A grand challenge in many-body quantum physics is to explain the apparent connection between quantum criticality and high-temperature superconductivity in the cuprates and similar systems, such as the iron pnictides and chalcogenides. Here we argue t hat the quantum-critical regime plays an essential role in activating a strong-pairing mechanism: although pairing bosons create a symmetry-breaking instability which suppresses pairing, the combination of these broken-symmetry states within the critical regime can restore this symmetry for the paired quasiparticles. This condition is shown to be met within a large-U ansatz. A hidden quantum phase transition then arises between a Fermi-liquid and a non-Fermi-liquid broken-symmetry striped state, and a critical regime in which the broken-symmetry states are combined.
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamen- tal step toward this goal would be to identify the relative weight of the electr onic and phononic contributions to the overall frequency (Omega) dependent bosonic function, Pi(Omega). We perform optical spectroscopy on Bi2212 crystals with simultaneous time- and frequency-resolution; this technique allows us to disentangle the electronic and phononic contributions by their different temporal evolution. The strength of the interaction ({lambda}~1.1) with the electronic excitations and their spectral distribution fully account for the high critical temperature of the superconducting phase transition.
170 - A. S. Alexandrov 2011
Along with some other researches we have realised that the true origin of high-temperature superconductivity should be found in the strong Coulomb repulsion combined with a significant electronphonon interaction. Both interactions are strong (on the order of 1 eV) compared with the low Fermi energy of doped carries which makes the conventional BCS-Eliashberg theory inapplicable in cuprates and related doped insulators. Based on our recent analytical and numerical results I argue that high-temperature superconductivity from repulsion is impossible for any strength of the Coulomb interaction. Major steps of our alternative polaronic theory are outlined starting from the generic Hamiltonian with the unscreened (bare) Coulomb and electron-phonon interactions accounting for critical temperatures of high-temperature superconductors without any adjustable parameters.
In order to understand the material dependence of $T_c$ within the single-layered cuprates, we study a two-orbital model that considers both $d_{x^2-y^2}$ and $d_{z^2}$ orbitals. We reveal that a hybridization of $d_{z^2}$ on the Fermi surface substa ntially affects $T_c$ in the cuprates, where the energy difference $Delta E$ between the $d_{x^2-y2}$ and $d_{z^2}$ orbitals is identified to be the key parameter that governs both the hybridization and the shape of the Fermi surface. A smaller $Delta E$ tends to suppress $T_c$ through a larger hybridization, whose effect supersedes the effect of diamond-shaped (better-nested) Fermi surface. The mechanism of the suppression of d-wave superconductivity due to $d_{z^2}$ orbital mixture is clarified from the viewpoint of the ingredients involved in the Eliashberg equation, i.e., the Greens functions and the form of the pairing interaction described in the orbital representation. The conclusion remains qualitatively the same if we take a three-orbital model that incorporates Cu 4s orbital explicitly, where the 4s orbital is shown to have an important effect of making the Fermi surface rounded. We have then identified the origin of the material and lattice-structure dependence of $Delta E$, which is shown to be determined by the energy difference $Delta E_d$ between the two Cu3d orbitals (primarily governed by the apical oxygen height), and the energy difference $Delta E_p$ between the in-plane and apical oxygens (primarily governed by the interlayer separation $d$).
188 - H. Miao , R. Fumagalli , M. Rossi 2019
Although charge density waves (CDWs) are omnipresent in cuprate high-temperature superconductors, they occur at significantly different wavevectors, confounding efforts to understand their formation mechanism. Here, we use resonant inelastic x-ray sc attering to investigate the doping- and temperature-dependent CDW evolution in La2-xBaxCuO4 (x=0.115-0.155). We discovered that the CDW develops in two stages with decreasing temperature. A precursor CDW with quasi-commensurate wavevector emerges first at high-temperature. This doping-independent precursor CDW correlation originates from the CDW phase mode coupled with a phonon and seeds the low-temperature CDW with strongly doping dependent wavevector. Our observation reveals the precursor CDW and its phase mode as the building blocks of the highly intertwined electronic ground state in the cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا