ﻻ يوجد ملخص باللغة العربية
We measured the chemical and magnetic depth profiles of a single crystalline (La$_{1-x}$Pr$_x$)$_{1-y}$Ca$_y$MnO$_{3-{delta}}$ (x = 0.52pm0.05, y = 0.23pm0.04, {delta} = 0.14pm0.10) film grown on a NdGaO3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures.
We measured the magnetization depth profile of a (La1-xPrx)1-yCayMnO3 (x = 0.60pm0.04, y = 0.20pm0.03) film as a function of applied bending stress using polarized neutron reflectometry. From these measurements we obtained a coupling coefficient rela
Despite the huge importance of friction in regulating movement in all natural and technological processes, the mechanisms underlying dissipation at a sliding contact are still a matter of debate. Attempts to explain the dependence of measured frictio
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are b
Hysteretic magnetoresistance (MR) is often used as a signature of ferromagnetism in conducting oxide thin films and heterostructures. Here, magnetotransport is investigated in a non-magnetic uniformly La-doped SrSnO3 film grown using hybrid molecular
Magnetic resonance spectra of EuTiO3 in both bulk and thin film form were taken at temperatures from 3-350 K and microwave frequencies from 9.2-9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole an