ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Spin Excited States Spectroscopy in a Quantum Dot Probed by QPC Back-action

82   0   0.0 ( 0 )
 نشر من قبل Ming Xiao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum point contact (QPC) back-action has been found to cause non-thermal-equilibrium excitations to the electron spin states in a quantum dot (QD). Here we use back-action as an excitation source to probe the spin excited states spectroscopy for both the odd and even electron numbers under a varying parallel magnetic field. For a single electron, we observed the Zeeman splitting. For two electrons, we observed the splitting of the spin triplet states $|T^{+}>$ and $|T^{0}>$ and found that back-action drives the singlet state $|S>$ overwhelmingly to $|T^{+}>$ other than $|T^{0}>$. All these information were revealed through the real-time charge counting statistics.

قيم البحث

اقرأ أيضاً

We demonstrate that excited states in single-layer graphene quantum dots can be detected via direct transport experiments. Coulomb diamond measurements show distinct features of sequential tunneling through an excited state. Moreover, the onset of in elastic cotunneling in the diamond region could be detected. For low magnetic fields, the positions of the single-particle energy levels fluctuate on the scale of a flux quantum penetrating the dot area. For higher magnetic fields, the transition to the formation of Landau levels is observed. Estimates based on the linear energy-momentum relation of graphene give carrier numbers of the order of 10 for our device.
Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased q uantum point contact. It is critical to understand the back-action disturbances resulting from such a measurement approach. Previous studies have indicated that quantum point contact detectors emit phonons which are then absorbed by nearby qubits. We report here the observation of a pronounced back-action effect in multiple dot circuits where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the quantum point contact and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.
We study a graphene double quantum dot in different coupling regimes. Despite the strong capacitive coupling between the dots, the tunnel coupling is below the experimental resolution. We observe additional structures inside the finite-bias triangles , part of which can be attributed to electronic excited dot states, while others are probably due to modulations of the transmission of the tunnel barriers connecting the system to source and drain leads.
124 - Y. Komijani , M. Csontos , T. Ihn 2008
A quantum dot fabricated by scanning probe oxidation lithography on a p-type, C-doped GaAs/AlGaAs heterostructure is investigated by low temperature electrical conductance measurements. Clear Coulomb blockade oscillations are observed and analyzed in terms of sequential tunneling through the single-particle levels of the dot at T_hole = 185 mK. The charging energies as large as 2 meV evaluated from Coulomb diamond measurements together with the well resolved single-hole excited state lines in the charge stability diagram indicate that the dot is operated with a small number of confined particles close to the ultimate single-hole regime.
Owing to ever increasing gate fidelities and to a potential transferability to industrial CMOS technology, silicon spin qubits have become a compelling option in the strive for quantum computation. In a scalable architecture, each spin qubit will hav e to be finely tuned and its operating conditions accurately determined. In this prospect, spectroscopic tools compatible with a scalable device layout are of primary importance. Here we report a two-tone spectroscopy technique providing access to the spin-dependent energy-level spectrum of a hole double quantum dot defined in a split-gate silicon device. A first GHz-frequency tone drives electric-dipole spin resonance enabled by the valence-band spin-orbit coupling. A second lower-frequency tone (approximately 500 MHz) allows for dispersive readout via rf-gate reflectometry. We compare the measured dispersive response to the linear response calculated in an extended Jaynes-Cummings model and we obtain characteristic parameters such as g-factors and tunnel/spin-orbit couplings for both even and odd occupation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا