ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersively probed microwave spectroscopy of a silicon hole double quantum dot

242   0   0.0 ( 0 )
 نشر من قبل Rami Ezzouch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Owing to ever increasing gate fidelities and to a potential transferability to industrial CMOS technology, silicon spin qubits have become a compelling option in the strive for quantum computation. In a scalable architecture, each spin qubit will have to be finely tuned and its operating conditions accurately determined. In this prospect, spectroscopic tools compatible with a scalable device layout are of primary importance. Here we report a two-tone spectroscopy technique providing access to the spin-dependent energy-level spectrum of a hole double quantum dot defined in a split-gate silicon device. A first GHz-frequency tone drives electric-dipole spin resonance enabled by the valence-band spin-orbit coupling. A second lower-frequency tone (approximately 500 MHz) allows for dispersive readout via rf-gate reflectometry. We compare the measured dispersive response to the linear response calculated in an extended Jaynes-Cummings model and we obtain characteristic parameters such as g-factors and tunnel/spin-orbit couplings for both even and odd occupation.

قيم البحث

اقرأ أيضاً

As an application in circuit quantum electrodynamics (cQED) coupled systems, superconducting resonators play an important role in high-sensitivity measurements in a superconductingsemiconductor hybrid architecture. Taking advantage of a high-impedanc e NbTiN resonator, we perform excited-state spectroscopy on a GaAs double quantum dot (DQD) by applying voltage pulses to one gate electrode. The pulse train modulates the DQD energy detuning and gives rise to charge state transitions at zero detuning. Benefiting from the outstanding sensitivity of the resonator, we distinguish different spin-state transitions in the energy spectrum according to the Pauli exclusion principle. Furthermore, we experimentally study how the interdot tunneling rate modifies the resonator response. The experimental results are consistent with the simulated spectra based on our model.
73 - T. Frey , P. J. Leek , M. Beck 2011
Quantum coherence in solid-state systems has been demonstrated in superconducting circuits and in semiconductor quantum dots. This has paved the way to investigate solid-state systems for quantum information processing with the potential benefit of s calability compared to other systems based on atoms, ions and photons. Coherent coupling of superconducting circuits to microwave photons, circuit quantum electrodynamics (QED), has opened up new research directions and enabled long distance coupling of qubits. Here we demonstrate how the electromagnetic field of a superconducting microwave resonator can be coupled to a semiconductor double quantum dot. The charge stability diagram of the double dot, typically measured by direct current (DC) transport techniques, is investigated via dispersive frequency shifts of the coupled resonator. This hybrid all-solid-state approach offers the potential to coherently couple multiple quantum dot and superconducting qubits together on one chip, and offers a method for high resolution spectroscopy of semiconductor quantum structures.
95 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-po tential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin spectroscopy by controlling independentl y the voltages of the four leads. The pseudospin is defined by the orbital occupation of one or the other dot. Starting from the SU(4) symmetric point of spin and pseudospin degeneracy in the Kondo regime, for an odd number of electrons in the system, we show how the conductance through each dot varies as the symmetry is reduced to SU(2) by a pseudo-Zeeman splitting, and as bias voltages are applied to any of the dots. We analize the expected behavior of the system in general, and predict characteristic fingerprint features of the SU(4) to SU(2) crossover that have not been observed so far.
91 - T. Frey , P. J. Leek , M. Beck 2012
We present microwave frequency measurements of the dynamic admittance of a quantum dot tunnel coupled to a two-dimensional electron gas. The measurements are made via a high-quality 6.75 GHz on-chip resonator capacitively coupled to the dot. The reso nator frequency is found to shift both down and up close to conductance resonance of the dot corresponding to a change of sign of the reactance of the system from capacitive to inductive. The observations are consistent with a scattering matrix model. The sign of the reactance depends on the detuning of the dot from conductance resonance and on the magnitude of the tunnel rate to the lead with respect to the resonator frequency. Inductive response is observed on a conductance resonance, when tunnel coupling and temperature are sufficiently small compared to the resonator frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا