ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering Negative Differential Conductance with the Cu(111) Surface State

246   0   0.0 ( 0 )
 نشر من قبل Thomas Frederiksen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.



قيم البحث

اقرأ أيضاً

We revisit the theory of the Kondo effect observed by a scanning-tunneling microscope (STM) for transition-metal atoms (TMAs) on noble-metal surfaces, including $d$ and $s$ orbitals of the TMA, surface and bulk conduction states of the metal, and the ir hoppingto the tip of the STM. Fitting the experimentally observed STM differential conductance for Co on Cu(111) including both, the Kondo feature near the Fermi energy and the resonance below the surface band, we conclude that the STM senses mainly the Co $s$ orbital and that the Kondo antiresonance is due to interference between states with electrons in the $s$ orbital and a localized $d$ orbital mediated by the conduction states.
We calculate the conductance spectra of a Co atom adsorbed on Cu(111), considering the Co $3d$ orbitals within a correlated multiple configurations model interacting through the substrate band with the Co $4s$ orbital, which is treated in a mean-fiel d like approximation. By symmetry, only the $d_{z^2}$ orbital couples with the $s$ orbital through the Cu bands, and the interference between both conduction channels introduces a zero-bias anomaly in the conductance spectra. We find that, while the Kondo resonance is mainly determined by the interaction of the Co $d$ orbitals with the bulk states of the Cu(111) surface, a proper description of the contribution given by the coupling with the localized surface states to the Anderson widths is crucial to describe the interference line shape. We find that the coupling of the Co $4s$ orbital with the Shockley surface states is responsible of two main features observed in the measured conductance spectra, the dip shape around the Fermi energy and the resonance structure at the surface state low band edge.
220 - Xing-Tao An 2014
We theoretically investigate the effect of the negative differential conductance of a ferromagnetic barrier on the surface of a topological insulator. Due to the changes of the shape and position of the Fermi surfaces in the ferromagnetic barrier, th e transport processes can be divided into three kinds: the total, partial and blockade transmission mechanisms. The bias voltage can give rise to the transition of the transport processes from partial to blockade transmission mechanisms, which results in a giant effect of negative differential conductance. With appropriate structural parameters, the current-voltage characteristics show that the minimum value of the current can reach to zero in a wide range of the bias voltage, and a large peak-to-valley current ratio can be obtained.
Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklik e structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report res onant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonant peak in the device characteristics occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance persists up to room temperature and is gate voltage-tuneable due to graphenes unique Dirac-like spectrum. Whereas conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا