ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant tunnelling and negative differential conductance in graphene transistors

236   0   0.0 ( 0 )
 نشر من قبل Mark Greenaway
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonant peak in the device characteristics occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance persists up to room temperature and is gate voltage-tuneable due to graphenes unique Dirac-like spectrum. Whereas conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.



قيم البحث

اقرأ أيضاً

Double barrier GaN/AlN resonant tunneling heterostructures have been grown by molecular beam epitaxy on the (0001) plane of commercially available bulk GaN substrates. Resonant tunneling diodes were fabricated; room temperature current-voltage measur ements reveal the presence of a negative differential conductance region under forward bias with peak current densities of ~6.4 $kA/cm^2$ and a peak to valley current ratio of ~1.3. Reverse bias operation presents a characteristic turn-on threshold voltage intimately linked to the polarization fields present in the heterostructure. An analytic electrostatic model is developed to capture the unique features of polar-heterostructure-based resonant tunneling diodes; both the resonant and threshold voltages are derived as a function of the design parameters and polarization fields. Subsequent measurements confirm the repeatability of the negative conductance and demonstrate that III-nitride tunneling heterostructures are capable of robust resonant transport at room temperature.
178 - A. Mishchenko , J. S. Tu , Y. Cao 2014
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the reali sation of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes, separated by a layer of hexagonal boron nitride (hBN) in a transistor device, can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induces a tuneable radio-frequency oscillatory current which has potential for future high frequency technology.
Experimental results for sequential transport through a lateral quantum dot in the regime of spin blockade induced by spin dependent tunneling are compared with theoretical results obtained by solving a master equation for independent electrons. Orbi tal and spin effects in electron tunneling in the presence of a perpendicular magnetic field are identified and discussed in terms of the Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of negative differential conductances is observed. Electrical asymmetries in tunnel rates and capacitances must be introduced in order to account for the experimental findings. Fast relaxation of the excited states in the quantum dot have to be assumed, in order to explain the absence of certain structures in the transport spectra.
Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklik e structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.
313 - Alex Zazunov 2005
Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. u sing a carbon nanotube contacted by an STM tip [Nature {bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A half-shuttle mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the floating level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا