ﻻ يوجد ملخص باللغة العربية
We report on the screening of samples of titanium metal for their radio-purity. The screening process described in this work led to the selection of materials used in the construction of the cryostats for the Large Underground Xenon (LUX) dark matter experiment. Our measurements establish titanium as a highly desirable material for low background experiments searching for rare events. The sample with the lowest total long-lived activity was measured to contain <0.25 mBq/kg of U-238, <0.2 mBq/kg of Th-232, and <1.2 mBq/kg of K-40. Measurements of several samples also indicated the presence of short-lived (84 day half life) Sc-46, likely produced cosmogenically via muon initiated (n,p) reactions.
The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is t
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$times10^{-12}$,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioa
To ensure compliance with the experimental requirement for ultra-low background, in this study the radioactivity of stainless steels manufactured by smelting is thoroughly investigated. Raw materials, stage samples, and commercial samples are investi
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volu
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoi