ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

80   0   0.0 ( 0 )
 نشر من قبل Sally Shaw
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of $^{238}$U$_{e}$~$<$1.6~mBq/kg, $^{238}$U$_{l}$~$<$0.09~mBq/kg, $^{232}$Th$_{e}$~$=0.28pm 0.03$~mBq/kg, $^{232}$Th$_{l}$~$=0.25pm 0.02$~mBq/kg, $^{40}$K~$<$0.54~mBq/kg, and $^{60}$Co~$<$0.02~mBq/kg (68% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $0.160pm0.001$(stat)$pm0.030$(sys) counts.

قيم البحث

اقرأ أيضاً

The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$times10^{-12}$,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioa ctivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data.
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay a central role in astroparticle physics. In fact, the discovery of this elusive decay woul d be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for neutrinoless double beta decay are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO4 scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the neutrinoless double beta decay of 100Mo as high as ~10E24 years in only one year of data taking. The same array made of 40CaMoO4 scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of 48Ca) will instead be capable of achieving the remarkable sensitivity of ~10E25 years on the half-life of 100Mo neutrinoless double beta decay in only one year of measurement.
As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as $0.8times 10^{-6}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$ have already been achieved in CAST while values down to $sim10^{-7}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$ have been obtained in a test bench placed underground in the Laboratorio Subterraneo de Canfranc. Prospects to consolidate and further reduce these values down to $sim10^{-8}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$will be described. Such detectors, placed at the focal point of x-ray telescopes in the future IAXO experiment, would allow for 10$^5$ better signal-to-noise ratio than CAST, and search for solar axions with $g_{agamma}$ down to few 10$^{12}$ GeV$^{-1}$, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with $sim$0.300 kg of Ar at 10 bar, or alternatively $sim$0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach $sim10^{-44}$ cm$^2$ for low mass ($<10$ GeV) WIMPs, well beyond current experimental limits in this mass range.
Charge trapping degrades the energy resolution of germanium (Ge) detectors, which require to have increased experimental sensitivity in searching for dark matter and neutrinoless double-beta decay. We investigate the charge trapping processes utilizi ng nine planar detectors fabricated from USD-grown crystals with well-known net impurity levels. The charge collection efficiency as a function of charge trapping length is derived from the Shockley-Ramo theorem. Furthermore, we develop a model that correlates the energy resolution with the charge collection efficiency. This model is then applied to the experimental data. As a result, charge collection efficiency and charge trapping length are determined accordingly. Utilizing the Lax model (further developed by CDMS collaborators), the absolute impurity levels are determined for nine detectors. The knowledge of these parameters when combined with other traits such as the Fano factor serve as a reliable indicator of the intrinsic nature of charge trapping within the crystals. We demonstrate that electron trapping is more severe than hole trapping in a p-type detector and the charge collection efficiency depends on the absolute impurity level of the Ge crystal when an adequate bias voltage is applied to the detector. Negligible charge trapping is found when the absolute impurity level is less than 1.0$times$10$^{11}/$cm$^{3}$ for collecting electrons and 2.0$times$10$^{11}/$cm$^{3}$ for collecting holes.
The growing interest in clarifying the controversial situation in the Dark Matter sector has driven the experimental efforts towards new ways to investigate the long-standing DAMA/LIBRA result. Among them, low-temperature calorimeters based on Na-con taining scintillating crystals offer the possibility to clarify the nature of the measured signal via particle identification. Here we report the first measurement of Na-containing crystals, based on material different from NaI, i.e. Na$_2$Mo$_2$O$_7$ and Na$_2$W$_2$O$_7$, pointing out their excellent performance in term of energy resolution, light yield, and particle identification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا