ترغب بنشر مسار تعليمي؟ اضغط هنا

Assay of low-background stainless steel by smelting for the neutrino experiment at Jinping

122   0   0.0 ( 0 )
 نشر من قبل Ghulam Hussain
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To ensure compliance with the experimental requirement for ultra-low background, in this study the radioactivity of stainless steels manufactured by smelting is thoroughly investigated. Raw materials, stage samples, and commercial samples are investigated by glow discharge mass spectrometry (GDMS) and/or with high-purity germanium detectors (HPGe) at both the ground level and/or the China Jinping Underground Laboratory. Custom-made stainless steel samples are found to have radioactivity levels comparable to those in other low-background experiments. The comprehensive results regarding the radioactivity level in materials to be used in the proposed Jinping Neutrino Experiment are reported.

قيم البحث

اقرأ أيضاً

The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector will be installed in a water Cherenkov cosmic ray veto detector and will run for 3 to 5 years, ensuring water tightness is critical to the successful operation of the antineutrino detectors. We choose a special method to seal the detector. Three leak checking methods have been employed to ensure the seal quality. This paper will describe the sealing method and leak testing results.
We report on the screening of samples of titanium metal for their radio-purity. The screening process described in this work led to the selection of materials used in the construction of the cryostats for the Large Underground Xenon (LUX) dark matter experiment. Our measurements establish titanium as a highly desirable material for low background experiments searching for rare events. The sample with the lowest total long-lived activity was measured to contain <0.25 mBq/kg of U-238, <0.2 mBq/kg of Th-232, and <1.2 mBq/kg of K-40. Measurements of several samples also indicated the presence of short-lived (84 day half life) Sc-46, likely produced cosmogenically via muon initiated (n,p) reactions.
94 - Y. Hino , H. Furuta , S. Hasegawa 2019
This paper describes the design and the construction of the stainless steel tank of the JSNS$^2$ detector. The leakage was examined using water and gas after the construction. The new sealing technique with liquid gasket was developed, and its sealin g capability was evaluated quantitatively. The result shows over 5 times better value than the tolerance level of leakage.The acceleration measurement during the transportation of the tank shows adequate robustness.These tests prove that the stainless steel tank is feasible to use the real experiment.
129 - Qiang Du 2017
We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy $gamma$-ray cascade is used to identify neutron events. The large energy deposition of the delayed $gamma$-rays from the $(n, gamma)$ reaction on gadolinium, together with the excellent n-$gamma$ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of $(1.51pm0.03(stat.)pm0.10(syst.))times10^{-7}$ cm$^{-2}$s$^{-1}$ in the energy range of 1 -- 10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a one meter thick polyethylene room gives a significantly lower flux of $(4.9pm0.9(stat.)pm0.5(syst.))times10^{-9}$ cm$^{-2}$s$^{-1}$ with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulation.
Neutrino magnetic moment ($ u$MM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the Xenon1T collaboration might indicate a $sim 2.2times10^{-11} mu_B$ effective neutrino magnetic moment ($mu_ u^{eff}$) from solar neutrinos. Therefore, it is essential to carry out the $ u$MM searches at a different experiment to confirm or exclude such hypothesis. We study the feasibility of doing $ u$MM measurement with 4 kton active mass at Jinping neutrino experiment using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $mu_ u^{eff}$ can reach $1.2times10^{-11}mu_B$ at 90% C.L. with 10-year data taking of solar neutrinos. Besides the intrinsic low energy background $^{14}$C in the liquid scintillator, we find the sensitivity to $ u$MM is highly correlated with the systematic uncertainties of $pp$ and $^{85}$Kr. Reducing systematic uncertainties ($pp$ and $^{85}$Kr) and the intrinsic background ($^{14}$C and $^{85}$Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source $^{51}$Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($mu_{ u_e}$) with $1.1times10^{-11} mu_B$ at 90% C.L.. With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا