ترغب بنشر مسار تعليمي؟ اضغط هنا

Surviving the hole I: Spatially resolved chemistry around Sgr A*

37   0   0.0 ( 0 )
 نشر من قبل Sergio Mart\\'in
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interstellar region within the few central parsecs around the super-massive black hole, Sgr A* at the very Galactic center is composed by a number of overlapping molecular structures which are subject to one of the most hostile physical environments in the Galaxy. We present high resolution (4x3~0.16x0.11 pc) interferometric observations of CN, 13CN, H2CO, SiO, c-C3H2 and HC3N emission at 1.3 mm towards the central ~4 pc of the Galactic center region. Strong differences are observed in the distribution of the different molecules. The UV resistant species CN, the only species tracing all previously identified circumnuclear disk (CND) structures, is mostly concentrated in optically thick clumps in the rotating filaments around Sgr A*. H2CO emission traces a shell-like structure that we interpret as the expansion of Sgr A East against the 50 km/s and 20 km/s giant molecular clouds (GMCs). We derive isotopic ratios 12C/13C~15-45 across most of the CND region. The densest molecular material, traced by SiO and HC3N, is located in the southern CND. The observed c-C3H2/HC3N ratio observed in the region is more than an order of magnitude lower than in Galactic PDRs. Toward the central region only CN was detected in absorption. Apart from the known narrow line-of-sight absorptions, a 90 km/s wide optically thick spectral feature is observed. We find evidences of an even wider (>100 km/s) absorption feature. Around 70-75% of the gas mass, concentrated in just the 27% densest molecular clumps, is associated with rotating structures and show evidences of association with each of the arcs of ionized gas in the mini-spiral structure. Chemical differentiation has been proven to be a powerful tool to disentangle the many overlapping molecular components in this crowded and heavily obscured region.

قيم البحث

اقرأ أيضاً

We report sub-arcsecond ALMA observations between 272 - 375 GHz towards Sgr A*s Circumnuclear disk (CND). Our data comprises 8 individual pointings, with significant SiO (8(7) - 7(6)) and SO (7 - 6) emission detected towards 98 positions within these pointings. Additionally, we identify H2CS (9(1,9) - 8(1,8)), OCS (25 - 24) and CH3OH (2(1,1) - 2(0,2)) towards a smaller subset of positions. By using the observed peak line flux density together with a Bayesian Inference technique informed by radiative transfer models, we systematically recover the physical gas conditions towards each of these positions. We estimate that the bulk of the surveyed gas has temperature T < 500 K and density n $lessapprox 10^{6}$ cm$^{-3}$, consistent with previous studies of similar positions as traced by HCN clumps. However, we identify an uncharacteristically hot (T $approx 600$ K) and dense (n $approx 10^{6}$ cm$^{-3}$) source in the Northeastern Arm. This position is found to be approximately consistent with a gravitationally bound region dominated by turbulence. We also identify a nearby cold (T $approx 60$ K) and extremely dense (n $approx 10^{7}$ cm$^{-3}$) position that is again potentially bound and dominated by turbulence. We also determine that the total gas mass contained within the CND is M $approx 4 times 10^{4}$ $M_{odot}$. Furthermore, we qualitatively note that the observed chemical enrichment across large scales within the CND is consistent with bulk grain processing, though multiple desorption mechanisms are plausibly responsible. Further chemical modelling is required to identify the physical origin of the grain-processing, as well as the localised H2CS and OCS emission.
131 - Hsiao-Wen Chen 2013
Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional (3D) map of halo gas arou nd the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE0435-1223 at redshift z=1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z=0.4188 and projected distance of rho=50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z=0.7818 and rho=33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed MgII absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z>0.2. A MgII absorber is detected in every sightline observed through the halos of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO--galaxy pair studies. While the multi-sightline study confirms the unity covering fraction of MgII absorbing gas at rho < 50 kpc from star-forming disks, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disk, collimated outflows, and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width >~ 10 kpc are found to best describe the observed gas kinematics across multiple sightlines.
We present observations of ionized gas outflows in eleven z$ =1.39-2.59$ radio-loud quasar host galaxies. Data was taken with the integral field spectrograph (IFS) OSIRIS and the adaptive optics system at the W.M. Keck Observatory targeting nebular e mission lines (H$beta$, [OIII], H$alpha$, [NII] and [SII]) redshifted into the near-infrared (1-2.4 micron). Outflows with velocities of 500 - 1700 km,s$^{-1}$ are detected in 10 systems on scales ranging from $<1$ kpc to 10 kpc with outflow rates from 8-2400 M$_odot$yr$^{-1}$. For five sources, the outflow momentum rates are 4-80 times $L_{AGN}$/c, consistent with outflows being driven by an energy conserving shock. The five other outflows are either driven by radiation pressure or an isothermal shock. The outflows are the dominant source of gas depletion, and we find no evidence for star formation along the outflow paths. For eight objects, the outflow paths are consistent with the orientation of the jets. Yet, given the calculated pressures, we find no evidence of the jets currently doing work on these galactic-scale ionized outflows. We find that galactic-scale feedback occurs well before galaxies establish a substantial fraction of their stellar mass, as expected from local scaling relationships.
We map optical and near-infrared (NIR) stellar population properties of the inner 320$times$535pc$^2$ of the elliptical galaxy NGC1052. The optical and NIR spectra were obtained using the Gemini Integral Field Units of the GMOS instrument and NIFS, r espectively. By performing stellar population synthesis in the optical alone, we find that this region of the galaxy is dominated by old (t$>$10Gyr) stellar populations. Using the NIR, we find the nucleus to be dominated by old stellar populations, and a circumnuclear ring with younger ($sim$2.5Gyr) stars. We also combined the optical and NIR datacubes and performed a panchromatic spatially resolved stellar population synthesis, which resulted in a dominance of older stellar populations, in agreement with optical results. We argue that the technique of combining optical and NIR data might be useful to isolate the contribution of stellar population ages with strong NIR absorption bands. We also derive the stellar kinematics and find that the stellar motions are dominated by a high ($sim$240km$cdot$s$^{-1}$) velocity dispersion in the nucleus, with stars also rotating around the center. Lastly, we measure the absorption bands, both in the optical and in the NIR, and find a nuclear drop in their equivalent widths. The favored explanation for this drop is a featureless continuum emission from the low luminosity active galactic nucleus.
The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how th e probability density function PDF(j/j_mean) can inform us of a galaxys morphology and evolutionary history with a spanning set of examples from present-day galaxies and a galaxy at z~1.5. The shape of PDF(j/j_mean) is correlated with photometric morphology, with disk-dominated galaxies having more symmetric PDF(j/j_mean) and bulge-dominated galaxies having a strongly-skewed PDF(j/j_mean). Galaxies with bigger bulges have more strongly-tailed PDF(j/j_mean), but disks of all sizes have a similar PDF(j/j_mean). In future, PDF(j/j_mean) will be useful as a kinematic decomposition tool.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا