ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Velocity Maps of Halo Gas Around Two Intermediate-redshift Galaxies

133   0   0.0 ( 0 )
 نشر من قبل Hsiao-Wen Chen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hsiao-Wen Chen




اسأل ChatGPT حول البحث

Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional (3D) map of halo gas around the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE0435-1223 at redshift z=1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z=0.4188 and projected distance of rho=50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z=0.7818 and rho=33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed MgII absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z>0.2. A MgII absorber is detected in every sightline observed through the halos of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO--galaxy pair studies. While the multi-sightline study confirms the unity covering fraction of MgII absorbing gas at rho < 50 kpc from star-forming disks, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disk, collimated outflows, and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width >~ 10 kpc are found to best describe the observed gas kinematics across multiple sightlines.

قيم البحث

اقرأ أيضاً

Our understanding of the structure, composition and evolution of galaxies has strongly improved in the last decades, mostly due to new results based on large spectroscopic and imaging surveys. In particular, the nature of ionized gas, its ionization mechanisms, its relation with the stellar properties and chemical composition, the existence of scaling relations that describe the cycle between stars and gas, and the corresponding evolution patterns have been widely explored and described. More recently, the introduction of additional techniques, in particular Integral Field Spectroscopy, and their use in large galaxy surveys, have forced us to re-interpret most of those recent results from a spatially resolved perspective. This review is aimed to complement recent efforts to compile and summarize this change of paradigm in the interpretation of galaxy evolution. In particular we cover three particular aspects not fully covered in detail in recent reviews: (i) the spatially resolved nature of the ionization properties in galaxies and the confusion introduced by considering just integrated quantities; (ii) the nature of the global scaling relations and their relations with the spatially resolved ones; and (iii) the dependence of the radial gradients and characteristic properties of the stellar populations and ionized gas on stellar mass and galaxy morphology. To this end we replicate published results, and present novel ones, based on the largest compilation of IFS data of galaxies in the nearby universe to date.
I review here the spatially-resolved spectroscopic properties of low-redshift star-forming galaxies (and their retired counter-parts), using results from the most recent Integral Field Spectroscopy galaxy surveys. First, I briefly summarise the globa l spectroscopic properties of these galaxies, discussing the main ionization processes, and the global relations described between the star-formation rates, oxygen abundances, and average properties of their stellar populations (age and metallicity) with the stellar mass. Second, I present the local distribution of the ionizing processes, down to kiloparsec scales, and I show how the global scaling relations found between integrated parameters (like the star-formation main sequence, mass-metallicity relation and Schmidt-Kennicutt law) present local/resolved counter-parts, with the global ones being just integrated/avera
We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in sup port of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory. We made use of a suite of L* discs, realised with and without `enhanced feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z~2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system. The `enhanced feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively `flat and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks at [O/Fe]=-0.05 and +0.05 (for stars with [Fe/H]>-1), consistent with our earlier work on dwarf discs. Our results with `enhanced feedback are inconsistent with our earlier generation of simulations realised with `conservative feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes.
We present a study of the metal-enriched cool halo gas traced by MgII absorption around 228 galaxies at z~0.8-1.5 within 28 quasar fields from the MUSE Analysis of Gas around Galaxies (MAGG) survey. We observe no significant evolution in the MgII equ ivalent width versus impact parameter relation and in the MgII covering fraction compared to surveys at z<~0.5. The stellar mass, along with distance from galaxy centre, appears to be the dominant factor influencing the MgII absorption around galaxies. With a sample that is 90% complete down to a star formation rate of ~0.1 Msun/yr and up to impact parameters ~250-350 kpc from quasars, we find that the majority (67^{+12}_{-15}% or 14/21) of the MgII absorption systems are associated with more than one galaxy. The complex distribution of metals in these richer environments adds substantial scatter to previously-reported correlations. Multiple galaxy associations show on average five times stronger absorption and three times higher covering fraction within twice the virial radius than isolated galaxies. The dependence of MgII absorption on galaxy properties disfavours the scenario in which a widespread intra-group medium dominates the observed absorption. This leaves instead gravitational interactions among group members or hydrodynamic interactions of the galaxy haloes with the intra-group medium as favoured mechanisms to explain the observed enhancement in the MgII absorption strength and cross section in rich environments.
232 - Bruno Henriques 2020
We have updated the Munich galaxy formation model, L-Galaxies, to follow the radial distributions of stars and atomic and molecular gas in galaxy discs. We include an H2-based star-formation law, as well as a detailed chemical-enrichment model with e xplicit mass-dependent delay times for SN-II, SN-Ia and AGB stars. Information about the star formation, feedback and chemical-enrichment histories of discs is stored in 12 concentric rings. The new model retains the success of its predecessor in reproducing the observed evolution of the galaxy population, in particular, stellar mass functions and passive fractions over the redshift range 0<=z<=3 and mass range 8<=log(M_*/Msun)<=12, the black hole-bulge mass relation at z=0, galaxy morphology as a function of stellar mass and the mass-metallicity relations of both stellar and gas components. In addition, its detailed modelling of the radial structure of discs allows qualitatively new comparisons with observation, most notably with the relative sizes and masses of the stellar, atomic and molecular components in discs. Good agreement is found with recent data. Comparison of results obtained for simulations differing in mass resolution by more than two orders of magnitude shows that all important distributions are numerically well converged even for this more detailed model. An examination of metallicity and surface-density gradients in the stars and gas indicates that our new model, with star formation, chemical enrichment and feedback calculated self-consistently on local disc scales, reproduces some but not all of the trends seen in recent many-galaxy IFU surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا