ﻻ يوجد ملخص باللغة العربية
Let $mathbb{F}_{p^{n}}$ be the finite field with $p^n$ elements and $operatorname{Tr}(cdot)$ be the trace function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, where $p$ is a prime and $n$ is an integer. Inspired by the works of Mesnager (IEEE Trans. Inf. Theory 60(7): 4397-4407, 2014) and Tang et al. (IEEE Trans. Inf. Theory 63(10): 6149-6157, 2017), we study a class of bent functions of the form $f(x)=g(x)+F(operatorname{Tr}(u_1x),operatorname{Tr}(u_2x),cdots,operatorname{Tr}(u_{tau}x))$, where $g(x)$ is a function from $mathbb{F}_{p^{n}}$ to $mathbb{F}_{p}$, $taugeq2$ is an integer, $F(x_1,cdots,x_n)$ is a reduced polynomial in $mathbb{F}_{p}[x_1,cdots,x_n]$ and $u_iin mathbb{F}^{*}_{p^n}$ for $1leq i leq tau$. As a consequence, we obtain a generic result on the Walsh transform of $f(x)$ and characterize the bentness of $f(x)$ when $g(x)$ is bent for $p=2$ and $p>2$ respectively. Our results generalize some earlier works. In addition, we study the construction of bent functions $f(x)$ when $g(x)$ is not bent for the first time and present a class of bent functions from non-bent Gold functions.
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their stud
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interle
In this paper, we investigate the power functions $F(x)=x^d$ over the finite field $mathbb{F}_{2^{4n}}$, where $n$ is a positive integer and $d=2^{3n}+2^{2n}+2^{n}-1$. It is proved that $F(x)=x^d$ is APcN at certain $c$s in $mathbb{F}_{2^{4n}}$, and
Differential uniformity is a significant concept in cryptography as it quantifies the degree of security of S-boxes respect to differential attacks. Power functions of the form $F(x)=x^d$ with low differential uniformity have been extensively studied
An involution over finite fields is a permutation polynomial whose inverse is itself. Owing to this property, involutions over finite fields have been widely used in applications such as cryptography and coding theory. As far as we know, there are no