ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Response of an OST to a Point-like Heat Source

45   0   0.0 ( 0 )
 نشر من قبل Michael Uhrmacher Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new technique of superconducting cavity diagnostics has been introduced by D. Hartrill at Cornell University, Ithaca, USA. Oscillating Superleak Transducers (OST) detect the heat transferred from a cavitys quench point via Second Sound through the superfluid He bath, needed to cool the superconducting cavity. The observed response of an OST is a complex, but reproducible pattern of oscillations. A small helium evaporation cryostat was built which allows the investigation of the response of an OST in greater detail. The distance between a point-like electrical heater and the OST can be varied. The OST can be mounted either parallel or perpendicular to the plate, housing the heat source. If the artificial quench-point releases an amount of energy compatible to a real quench spot on a cavitys surface, the OST signal starts with a negative pulse, which is usually strong enough to allow automatic detection. Furthermore, the reflection of the Second Sound on the wall is observed. A reflection coefficient R = 0.39 +- 0.05 of the glass wall is measured. This excludes a strong influence of multiple reflections in the complex OST response. Fourier analyses show three main frequencies, found in all OST spectra. They can be interpreted as modes of an oscillating circular membrane.



قيم البحث

اقرأ أيضاً

The experiment described in this paper is the first study of the response of a static tungsten powder sample to an impinging high energy proton beam pulse. The experiment was carried out at the HiRadMat facility at CERN. Observations include high spe ed videos of a proton beam induced perturbation of the powder sample as well as data from a laser Doppler vibrometer measuring the oscillations of the powder container. A comparison with a previous analogous experiment which studied a proton beam interaction with mercury is made
The energy spectrum and flux of neutrinos from a linear pion accelerator are calculated analytically under the assumption of a uniform accelerating gradient. The energy of a neutrino from this source reacting in a detector can be determined from timing and event position information.
97 - F. Staufenbiel 2012
The ILC baseline design for the positron source is based on radiation from a helical undulator to produce positrons in a thin target. Since the photon beam created in the helical undulator is circularly polarized, the generated positron beam is longi tudinally polarized. Using a photon collimator upstream the positron target the positron polarization can be enhanced. However, the photon beam intensity yields a huge thermal load in the collimator material. In this paper the thermal load and heat dissipation in the photon collimator is discussed and design solutions are suggested.
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charg e is assumed small. A simplified system of equations for the plasma electrons is derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMitt ance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا