ﻻ يوجد ملخص باللغة العربية
Consider the stochastic heat equation $partial_t u = (frac{varkappa}{2})Delta u+sigma(u)dot{F}$, where the solution $u:=u_t(x)$ is indexed by $(t,x)in (0, infty)timesR^d$, and $dot{F}$ is a centered Gaussian noise that is white in time and has spatially-correlated coordinates. We analyze the large-$|x|$ fixed-$t$ behavior of the solution $u$ in different regimes, thereby study the effect of noise on the solution in various cases. Among other things, we show that if the spatial correlation function $f$ of the noise is of Riesz type, that is $f(x)propto |x|^{-alpha}$, then the fluctuation exponents of the solution are $psi$ for the spatial variable and $2psi-1$ for the time variable, where $psi:=2/(4-alpha)$. Moreover, these exponent relations hold as long as $alphain(0, dwedge 2)$; that is precisely when Dalangs theory implies the existence of a solution to our stochastic PDE. These findings bolster earlier physical predictions.
We consider a nonlinear stochastic heat equation $partial_tu=frac{1}{2}partial_{xx}u+sigma(u)partial_{xt}W$, where $partial_{xt}W$ denotes space-time white noise and $sigma:mathbf {R}to mathbf {R}$ is Lipschitz continuous. We establish that, at every
We consider a family of nonlinear stochastic heat equations of the form $partial_t u=mathcal{L}u + sigma(u)dot{W}$, where $dot{W}$ denotes space-time white noise, $mathcal{L}$ the generator of a symmetric Levy process on $R$, and $sigma$ is Lipschitz
We consider the stochastic heat equation with a multiplicative white noise forcing term under standard intermitency conditions. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $xmapsto u(
We investigate the compact interface property in a recently introduced variant of the stochastic heat equation that incorporates dormancy, or equivalently seed banks. There individuals can enter a dormant state during which they are no longer subject
The Initial-Boundary Value Problem for the heat equation is solved by using a new algorithm based on a random walk on heat balls. Even if it represents a sophisticated generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Diri