ﻻ يوجد ملخص باللغة العربية
Synchrotron X-ray diffraction experiment shows that the metal-insulator transition occurring in a ferromagnetic state of a hollandite K$_2$Cr$_8$O$_{16}$ is accompanied by a structural distortion from the tetragonal $I4/m$ to monoclinic $P112_{1}/a$ phase with a $sqrt{2}timessqrt{2}times 1$ supercell. Detailed electronic structure calculations demonstrate that the metal-insulator transition is caused by a Peierls instability in the quasi-one-dimensional column structure made of four coupled Cr-O chains running in the $c$-direction, leading to the formation of tetramers of Cr ions below the transition temperature. This furnishes a rare example of the Peierls transition of fully spin-polarized electron systems.
Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a structural transition associated with a lattice `breathing mode. Using model considerations and first-principles calculations, we present a theory of this phase tr
The origin of ferromagnetic insulating state of La$_{7/8}$Sr$_{1/8}$MnO$_3$ is investigated. Based on the tight-binding model, it is shown that this state can be attributed to the Peierls instability arisen from the interplay of spin and orbital orde
Ultrafast dynamics across the photoinduced three-dimensional Peierls-like insulator-metal (IM) transition in CuIr$_{2}$S$_{4}$ was investigated by means of the all-optical ultrafast multi-pulse time-resolved spectroscopy. The structural coherence of
The spinel-structure CuIr$_{2}$S$_{4}$ compound displays a rather unusual orbitally-driven three-dimensional Peierls-like insulator-metal transition. The low-T symmetry-broken insulating state is especially interesting due to the existence of a metas
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we revea