ﻻ يوجد ملخص باللغة العربية
The origin of ferromagnetic insulating state of La$_{7/8}$Sr$_{1/8}$MnO$_3$ is investigated. Based on the tight-binding model, it is shown that this state can be attributed to the Peierls instability arisen from the interplay of spin and orbital ordering. The importance of the hole-orbiton-phonon intercoupling in doped manganites is revealed. This picture explains well the recent experimental finding of the reentrance of ferromagnetic metal state at low temperature [Phys. Rev. Lett. 96, 097201 (2006)].
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in
Synchrotron X-ray diffraction experiment shows that the metal-insulator transition occurring in a ferromagnetic state of a hollandite K$_2$Cr$_8$O$_{16}$ is accompanied by a structural distortion from the tetragonal $I4/m$ to monoclinic $P112_{1}/a$
A three-dimensional elemental carbon Kagome lattice (CKL), made of only fourfold coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60{deg} bond angles in the triangle rings, widely perceived to be
While some of the most elegant applications of topological insulators, such as quantum anomalous Hall effect, require the preservation of Dirac surface states in the presence of time-reversal symmetry breaking, other phenomena such as spin-charge con
We predict the new type of phase transition in quasi one-dimensional system of interacting electrons at high magnetic fields, the stabilization of a density wave which transforms a two dimensional open Fermi surface into a periodic chain of large poc