ﻻ يوجد ملخص باللغة العربية
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.
We show that the highly frustrated transverse-field Ising model on the three-dimensional pyrochlore lattice realizes a first-order phase transition without symmetry breaking between the low-field Coulomb quantum spin liquid and the high-field polariz
The nature of the phase transitions in La$_{1-x}$Ca$_x$MnO$_3$ and Pr$_{0.48}$Ca$_{0.52}$MnO$_3$ has been probed using heat capacity and magnetisation measurements. The phase transition associated with the onset of the stripe phase has been identifie
Synchrotron X-ray diffraction experiment shows that the metal-insulator transition occurring in a ferromagnetic state of a hollandite K$_2$Cr$_8$O$_{16}$ is accompanied by a structural distortion from the tetragonal $I4/m$ to monoclinic $P112_{1}/a$
I study the prospect of generating mass for symmetry-protected fermions without breaking the symmetry that forbids quadratic mass terms in the Lagrangian. I focus on 1+1 spacetime dimensions in the hope that this can provide guidance for interacting
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically