ﻻ يوجد ملخص باللغة العربية
A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive over-relaxation method to find numerical solutions in the entire domain for the special case of equal interfacial tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line tension as the governing potentials change.
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [1], the three minima of these potentials form a small triangle l
A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodyna
We propose a hybrid approach which employs the dynamical mean-field theory (DMFT) self-energy for the correlated, typically rather localized orbitals and a conventional density functional theory (DFT) exchange-correlation potential for the less corre
We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly-correlated materials where the one-electron description breaks down. We illustra
In this paper the relationship between the density functional theory of freezing and phase field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy f