ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Functional Theory of Freezing and Phase Field Crystal Modeling

119   0   0.0 ( 0 )
 نشر من قبل Ken Elder
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the relationship between the density functional theory of freezing and phase field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy functionals used in phase field crystal modeling and standard models of binary alloys (i.e., regular solution model). To demonstrate the properties of the phase field crystal formalism a simple model of binary alloy crystallization is derived and shown to simultaneously model solidification, phase segregation, grain growth, elastic and plastic deformations in anisotropic systems with multiple crystal orientations on diffusive time scales.



قيم البحث

اقرأ أيضاً

I summarize Density Functional Theory (DFT) in a language familiar to quantum field theorists, and introduce several apparently novel ideas for constructing {it systematic} approximations for the density functional. I also note that, at least within the large $K$ approximation ($K$ is the number of electron spin components), it is easier to compute the quantum effective action of the Coulomb photon field, which is related to the density functional by algebraic manipulations in momentum space.
The deviation of the electron density around the nuclei from spherical symmetry determines the electric field gradient (EFG), which can be measured by various types of spectroscopy. Nuclear Quadrupole Resonance (NQR) is particularly sensitive to the EFG. The EFGs, and by implication NQR frequencies, vary dramatically across materials. Consequently, searching for NQR spectral lines in previously uninvestigated materials represents a major challenge. Calculated EFGs can significantly aid at the search inception. To facilitate this task, we have applied high-throughput density functional theory calculations to predict EFGs for 15187 materials in the JARVIS-DFT database. This database, which will include EFG as a standard entry, is continuously increasing. Given the large scope of the database, it is impractical to verify each calculation. However, we assess accuracy by singling out cases for which reliable experimental information is readily available and compare them to the calculations. We further present a statistical analysis of the results. The database and tools associated with our work are made publicly available by JARVIS-DFT ( https://www.ctcms.nist.gov/~knc6/JVASP.html ) and NIST-JARVIS API ( http://jarvis.nist.gov ).
A phase-field crystal model based on the density-field approach incorporating high-order interparticle direct correlations is developed to study vapor-liquid-solid coexistence and transitions within a single continuum description. Conditions for the realization of the phase coexistence and transition sequence are systematically analyzed and shown to be satisfied by a broad range of model parameters, demonstrating the high flexibility and applicability of the model. Both temperature-density and temperature-pressure phase diagrams are identified, while structural evolution and coexistence among the three phases are examined through dynamical simulations. The model is also able to produce some temperature and pressure related material properties, including effects of thermal expansion and pressure on equilibrium lattice spacing, and temperature dependence of saturation vapor pressure. This model can be used as an effective approach for investigating a variety of material growth and deposition processes based on vapor-solid, liquid-solid, and vapor-liquid-solid growth.
Time-dependent density functional theory is extended to include dissipative systems evolving under a master equation, providing a Hamiltonian treatment for molecular electronics. For weak electric fields, the isothermal conductivity is shown to match the adiabatic conductivity, thereby recovering the Landauer result.
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density $1/f^2$ at high frequencies $f$. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا