ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-phase equilibria in density-functional theory: interfacial tensions

77   0   0.0 ( 0 )
 نشر من قبل Joseph Indekeu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision.



قيم البحث

اقرأ أيضاً

570 - Chang-You Lin , Michael Widom , 2013
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [1], the three minima of these potentials form a small triangle l ocated arbitrarily within the Gibbs triangle, which is more realistic for ternary fluid systems. We multiply linear functions that vanish at edges and vertices of the small triangle, yielding potentials in the form of quartic polynomials. We find that a subset of such potentials has simple analytic far-field solutions, and is a linear transformation of our original potential. By scaling, we can relate their solutions to those of our original potential. For special cases, the lengths of the sides of the small triangle are proportional to the corresponding interfacial tensions. For the case of equal interfacial tensions, we calculate a line tension that is proportional to the area of the small triangle.
150 - L. S. Li , X. S. Chen 2008
The phase transition of hard-sphere Heisenberg and Neutral Hard spheres mixture fluids has been investigated with the density functional theory in mean-field approximation (MF). The matrix of second derivatives of the grand canonical potential $Omega $ with respect to the total density, concentration, and the magnetization fluctuations has been investigated and diagonalized. The zero of the smallest eigenvalue $lambda_s$ signalizes the phase instability and the related eigenvector $textbf{x}_s$ characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a mixed spinodal where the order parameter is a mixture of total density, concentration, and magnetization. Although in the fixed total number density or temperature sections the obtained spinodal diagrams are quite similar topology, the predominant phase instabilities are considerable different by analyzing $textbf{x}_s$ in density-concentration-magnetization fluctuations space. Furthermore the spinodal diagrams in the different fixed concentration are topologically different.
A previous analysis of scaling, bounds, and inequalities for the non-interacting functionals of thermal density functional theory is extended to the full interacting functionals. The results are obtained from analysis of the related functionals from the equilibrium statistical mechanics of thermodynamics for an inhomogeneous system. Their extension to the functionals of density functional theory is described.
236 - James F. Lutsko 2021
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
182 - Chang-You Lin , Michael Widom , 2011
A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large dista nces from the contact line. We employ a triangular grid and use a successive over-relaxation method to find numerical solutions in the entire domain for the special case of equal interfacial tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line tension as the governing potentials change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا