ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel discovery of a new class of cold, faint debris discs

187   0   0.0 ( 0 )
 نشر من قبل Carlos Eiroa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby S tars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~ 115 to ~ 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are $lesssim$ 22 K, while the fractional luminosity of the cold dust is Ldust/Lstar ~ 10E-6, close to the luminosity of the Solar-Systems Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking classical debris disc models.



قيم البحث

اقرأ أيضاً

398 - M. M. Kasliwal 2010
We present photometric and spectroscopic follow-up of a sample of extragalactic novae discovered by the Palomar 60-inch telescope during a search for Fast Transients In Nearest Galaxies (P60-FasTING). Designed as a fast cadence (1-day) and deep (g < 21 mag) survey, P60-FasTING was particularly sensitive to short-lived and faint optical transients. The P60-FasTING nova sample includes 10 novae in M31, 6 in M81, 3 in M82, 1 in NGC2403 and 1 in NGC891. This significantly expands the known sample of extragalactic novae beyond the Local Group, including the first discoveries in a starburst environment. Surprisingly, our photometry shows that this sample is quite inconsistent with the canonical Maximum Magnitude Rate of Decline (MMRD) relation for classical novae. Furthermore, the spectra of the P60-FasTING sample are indistinguishable from classical novae. We suggest that we have uncovered a sub-class of faint and fast classical novae in a new phase space in luminosity-timescale of optical transients. Thus, novae span two orders of magnitude in both luminosity and time. Perhaps, the MMRD, which is characterized only by the white dwarf mass, was an over-simplification. Nova physics appears to be characterized by quite a rich four-dimensional parameter space in white dwarf mass, temperature, composition and accretion rate.
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical prop erties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.
Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial,protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of col d gas in the circumstellar (CS) debris discs around young main-sequence stars.This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. The aim of the paper is to investigate the presence of hot gas in the surroundings of stars bearing cold-gas debris discs. High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of $beta$ Pic and Fomalhaut, have been obtained from different observatories.We have analysed the Ca II H & K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris disc.Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths. These are the first detections of such Ca II features in 7 out of the 15 observed stars. In some of these stars, results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment. This hot gas is detected in at least ~80%, of edge-on cold-gas-bearing debris discs, while in only ~10% of the discs seen close to face-on. We interpret this as a geometrical effect, and suggest that the non-detection of hot gas absorptions is due to the disc inclination rather than to the absence of the hot-gas component.
118 - A. Moor , A. Kospal , P. Abraham 2014
A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are dynamically stirred up, either by the gravitational effect of locally formed Pluto-sized planetesimals (self-stirring scenario), or via secular perturbation caused by an inner giant planet (planetary stirring). The relative importance of these scenarios in debris systems is unknown. Here we present new Herschel Space Observatory imagery of 11 discs selected from the most massive and extended known debris systems. All discs were found to be extended at far-infrared wavelengths, five of them being resolved for the first time. We evaluated the feasibility of the self-stirring scenario by comparing the measured disc sizes with the predictions of the model calculated for the ages of our targets. We concluded that the self-stirring explanation works for seven discs. However, in four cases, the predicted pace of outward propagation of the stirring front, assuming reasonable initial disc masses, was far too low to explain the radial extent of the cold dust. Therefore, for HD 9672, HD 16743, HD 21997, and HD 95086, another explanation is needed. We performed a similar analysis for {ss} Pic and HR 8799, reaching the same conclusion. We argue that planetary stirring is a promising possibility to explain the disk properties in these systems. In HR 8799 and HD 95086 we may already know the potential perturber, since their known outer giant planets could be responsible for the stirring process. Our study demonstrates that among the largest and most massive debris discs self-stirring may not be the only active scenario, and potentially planetary stirring is responsible for destructive collisions and debris dust production in a number of systems.
Aims. We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open Time Key Program DUNES (DUst around NEarby Stars). Methods. We us ed Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160 um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP 103389. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths > 70 um. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a very distinct range of grain sizes is implied to dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا