ترغب بنشر مسار تعليمي؟ اضغط هنا

The co-existence of hot and cold gas in debris discs

290   0   0.0 ( 0 )
 نشر من قبل Isabel Rebollido
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial,protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars.This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. The aim of the paper is to investigate the presence of hot gas in the surroundings of stars bearing cold-gas debris discs. High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of $beta$ Pic and Fomalhaut, have been obtained from different observatories.We have analysed the Ca II H & K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris disc.Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths. These are the first detections of such Ca II features in 7 out of the 15 observed stars. In some of these stars, results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment. This hot gas is detected in at least ~80%, of edge-on cold-gas-bearing debris discs, while in only ~10% of the discs seen close to face-on. We interpret this as a geometrical effect, and suggest that the non-detection of hot gas absorptions is due to the disc inclination rather than to the absence of the hot-gas component.

قيم البحث

اقرأ أيضاً

The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1-1.5 resolution of th ree debris disks where the $^{12}$CO(2-1) rotational line was detected: HD131835, HD138813, and HD156623. We apply the iterative Lucy-Richardson deconvolution technique to the problem of circumstellar disks to derive disk geometries and surface brightness distributions of the gas. The derived disk parameters are used as input for thermochemical models to test both primordial and cometary scenarios for the origin of the gas. We favor a secondary origin for the gas in these disks and find that the CO gas masses ($sim 3times10^{-3}$ M$_{oplus}$) require production rates ($sim 5times 10^{-7}$ M$_{oplus}$~yr$^{-1}$) similar to those estimated for the bona-fide gas rich debris disk $beta$ Pic.
Debris discs are evidence of the ongoing destructive collisions between planetesimals, and their presence around stars also suggests that planets exist in these systems. In this paper, we present submillimetre images of the thermal emission from debr is discs that formed the SCUBA-2 Observations of Nearby Stars (SONS) survey, one of seven legacy surveys undertaken on the James Clerk Maxwell telescope between 2012 and 2015. The overall results of the survey are presented in the form of 850 microns (and 450 microns, where possible) images and fluxes for the observed fields. Excess thermal emission, over that expected from the stellar photosphere, is detected around 49 stars out of the 100 observed fields. The discs are characterised in terms of their flux density, size (radial distribution of the dust) and derived dust properties from their spectral energy distributions. The results show discs over a range of sizes, typically 1-10 times the diameter of the Edgeworth-Kuiper Belt in our Solar System. The mass of a disc, for particles up to a few millimetres in size, is uniquely obtainable with submillimetre observations and this quantity is presented as a function of the host stars age, showing a tentative decline in mass with age. Having doubled the number of imaged discs at submillimetre wavelengths from ground-based, single dish telescope observations, one of the key legacy products from the SONS survey is to provide a comprehensive target list to observe at high angular resolution using submillimetre/millimetre interferometers (e.g., ALMA, SMA).
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar systems counterparts are the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide robust numbers f or the incidence of debris discs around FGK stars in the solar neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE photometry, were obtained. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the DEBRIS consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars, is complete for F stars, almost complete for G stars and contains a substantial number of K stars to draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type 0.26 (6 objects with excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49 K stars), the fraction for all three spectral types together being 0.22 (23 out of 105 stars). Uncertainties corresponding to a 95% confidence level are given in the text for all these numbers. The medians of the upper limits of L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K); the lowest values being around 4.0E-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.
107 - S.T. Zeegers 2014
Dust in debris discs is constantly replenished by collisions between larger objects. In this paper, we investigate a method to detect these collisions. We generate models based on recent results on the Fomalhaut debris disc, where we simulate a backg round star transiting behind the disc, due to the proper motion of Fomalhaut. By simulating the expanding dust clouds caused by the collisions in the debris disc, we investigate whether it is possible to observe changes in the brightness of the background star. We conclude that in the case of the Fomalhaut debris disc, changes in the optical depth can be observed, with values of the optical depth ranging from $10^{-0.5}$ for the densest dust clouds to $10^{-8}$ for the most diffuse clouds with respect to the background optical depth of $sim1.2times10^{-3}$.
The cross section of material in debris discs is thought to be dominated by the smallest grains that can still stay in bound orbits despite the repelling action of stellar radiation pressure. Thus the minimum (and typical) grain size $s_text{min}$ is expected to be close to the radiation pressure blowout size $s_text{blow}$. Yet a recent analysis of a sample of Herschel-resolved debris discs showed the ratio $s_text{min}/s_text{blow}$ to systematically decrease with the stellar luminosity from about ten for solar-type stars to nearly unity in the discs around the most luminous A-type stars. Here we explore this trend in more detail, checking how significant it is and seeking to find possible explanations. We show that the trend is robust to variation of the composition and porosity of dust particles. For any assumed grain properties and stellar parameters, we suggest a recipe of how to estimate the true radius of a spatially unresolved debris disc, based solely on its spectral energy distribution. The results of our collisional simulations are qualitatively consistent with the trend, although additional effects may also be at work. In particular, the lack of grains with small $s_text{min}/s_text{blow}$ for lower luminosity stars might be caused by the grain surface energy constraint that should limit the size of the smallest collisional fragments. Also, a better agreement between the data and the collisional simulations is achieved when assuming debris discs of more luminous stars to have higher dynamical excitation than those of less luminous primaries. This would imply that protoplanetary discs of more massive young stars are more efficient in forming big planetesimals or planets that act as stirrers in the debris discs at the subsequent evolutionary stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا