ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Properties of Complex Unit Gain Graphs

202   0   0.0 ( 0 )
 نشر من قبل Nathan Reff
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Nathan Reff




اسأل ChatGPT حول البحث

A complex unit gain graph is a graph where each orientation of an edge is given a complex unit, which is the inverse of the complex unit assigned to the opposite orientation. We extend some fundamental concepts from spectral graph theory to complex unit gain graphs. We define the adjacency, incidence and Laplacian matrices, and study each of them. The main results of the paper are eigenvalue bounds for the adjacency and Laplacian matrices.



قيم البحث

اقرأ أيضاً

A complex unit gain graph (or ${mathbb T}$-gain graph) is a triple $Phi=(G, {mathbb T}, varphi)$ (or $(G, varphi)$ for short) consisting of a simple graph $G$, as the underlying graph of $(G, varphi)$, the set of unit complex numbers $mathbb{T}= { z in C:|z|=1 }$ and a gain function $varphi: overrightarrow{E} rightarrow mathbb{T}$ with the property that $varphi(e_{i,j})=varphi(e_{j,i})^{-1}$. In this paper, we prove that $2m(G)-2c(G) leq r(G, varphi) leq 2m(G)+c(G)$, where $r(G, varphi)$, $m(G)$ and $c(G)$ are the rank of the Hermitian adjacency matrix $H(G, varphi)$, the matching number and the cyclomatic number of $G$, respectively. Furthermore, the complex unit gain graphs $(G, mathbb{T}, varphi)$ with $r(G, varphi)=2m(G)-2c(G)$ and $r(G, varphi)=2m(G)+c(G)$ are characterized. These results generalize the corresponding known results about undirected graphs, mixed graphs and signed graphs. Moreover, we show that $2m(G-V_{0}) leq r(G, varphi) leq 2m(G)+b(G)$ holds for any subset $V_0$ of $V(G)$ such that $G-V_0$ is acyclic and $b(G)$ is the minimum integer $|S|$ such that $G-S$ is bipartite for $S subset V(G)$.
A complex unit gain graph (or $mathbb{T}$-gain graph) is a triple $Phi=(G, mathbb{T}, varphi)$ ($(G, varphi)$ for short) consisting of a graph $G$ as the underlying graph of $(G, varphi)$, $mathbb{T}= { z in C:|z|=1 } $ is a subgroup of the multiplic ative group of all nonzero complex numbers $mathbb{C}^{times}$ and a gain function $varphi: overrightarrow{E} rightarrow mathbb{T}$ such that $varphi(e_{ij})=varphi(e_{ji})^{-1}=overline{varphi(e_{ji})}$. In this paper, we investigate the relation among the rank, the independence number and the cyclomatic number of a complex unit gain graph $(G, varphi)$ with order $n$, and prove that $2n-2c(G) leq r(G, varphi)+2alpha(G) leq 2n$. Where $r(G, varphi)$, $alpha(G)$ and $c(G)$ are the rank of the Hermitian adjacency matrix $A(G, varphi)$, the independence number and the cyclomatic number of $G$, respectively. Furthermore, the properties of the complex unit gain graph that reaching the lower bound are characterized.
Let $Phi=(G, varphi)$ be a complex unit gain graph (or $mathbb{T}$-gain graph) and $A(Phi)$ be its adjacency matrix, where $G$ is called the underlying graph of $Phi$. The rank of $Phi$, denoted by $r(Phi)$, is the rank of $A(Phi)$. Denote by $theta( G)=|E(G)|-|V(G)|+omega(G)$ the dimension of cycle spaces of $G$, where $|E(G)|$, $|V(G)|$ and $omega(G)$ are the number of edges, the number of vertices and the number of connected components of $G$, respectively. In this paper, we investigate bounds for $r(Phi)$ in terms of $r(G)$, that is, $r(G)-2theta(G)leq r(Phi)leq r(G)+2theta(G)$, where $r(G)$ is the rank of $G$. As an application, we also prove that $1-theta(G)leqfrac{r(Phi)}{r(G)}leq1+theta(G)$. All corresponding extremal graphs are characterized.
In this paper we extend the work of Rautenbach and Szwarcfiter by giving a structural characterization of graphs that can be represented by the intersection of unit intervals that may or may not contain their endpoints. A characterization was proved independently by Joos, however our approach provides an algorithm that produces such a representation, as well as a forbidden graph characterization.
335 - Nathan Reff 2015
A theory of orientation on gain graphs (voltage graphs) is developed to generalize the notion of orientation on graphs and signed graphs. Using this orientation scheme, the line graph of a gain graph is studied. For a particular family of gain graphs with complex units, matrix properties are established. As with graphs and signed graphs, there is a relationship between the incidence matrix of a complex unit gain graph and the adjacency matrix of the line graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا