ﻻ يوجد ملخص باللغة العربية
A complex unit gain graph is a graph where each orientation of an edge is given a complex unit, which is the inverse of the complex unit assigned to the opposite orientation. We extend some fundamental concepts from spectral graph theory to complex unit gain graphs. We define the adjacency, incidence and Laplacian matrices, and study each of them. The main results of the paper are eigenvalue bounds for the adjacency and Laplacian matrices.
A complex unit gain graph (or ${mathbb T}$-gain graph) is a triple $Phi=(G, {mathbb T}, varphi)$ (or $(G, varphi)$ for short) consisting of a simple graph $G$, as the underlying graph of $(G, varphi)$, the set of unit complex numbers $mathbb{T}= { z
A complex unit gain graph (or $mathbb{T}$-gain graph) is a triple $Phi=(G, mathbb{T}, varphi)$ ($(G, varphi)$ for short) consisting of a graph $G$ as the underlying graph of $(G, varphi)$, $mathbb{T}= { z in C:|z|=1 } $ is a subgroup of the multiplic
Let $Phi=(G, varphi)$ be a complex unit gain graph (or $mathbb{T}$-gain graph) and $A(Phi)$ be its adjacency matrix, where $G$ is called the underlying graph of $Phi$. The rank of $Phi$, denoted by $r(Phi)$, is the rank of $A(Phi)$. Denote by $theta(
In this paper we extend the work of Rautenbach and Szwarcfiter by giving a structural characterization of graphs that can be represented by the intersection of unit intervals that may or may not contain their endpoints. A characterization was proved
A theory of orientation on gain graphs (voltage graphs) is developed to generalize the notion of orientation on graphs and signed graphs. Using this orientation scheme, the line graph of a gain graph is studied. For a particular family of gain graphs