ﻻ يوجد ملخص باللغة العربية
A complex unit gain graph (or ${mathbb T}$-gain graph) is a triple $Phi=(G, {mathbb T}, varphi)$ (or $(G, varphi)$ for short) consisting of a simple graph $G$, as the underlying graph of $(G, varphi)$, the set of unit complex numbers $mathbb{T}= { z in C:|z|=1 }$ and a gain function $varphi: overrightarrow{E} rightarrow mathbb{T}$ with the property that $varphi(e_{i,j})=varphi(e_{j,i})^{-1}$. In this paper, we prove that $2m(G)-2c(G) leq r(G, varphi) leq 2m(G)+c(G)$, where $r(G, varphi)$, $m(G)$ and $c(G)$ are the rank of the Hermitian adjacency matrix $H(G, varphi)$, the matching number and the cyclomatic number of $G$, respectively. Furthermore, the complex unit gain graphs $(G, mathbb{T}, varphi)$ with $r(G, varphi)=2m(G)-2c(G)$ and $r(G, varphi)=2m(G)+c(G)$ are characterized. These results generalize the corresponding known results about undirected graphs, mixed graphs and signed graphs. Moreover, we show that $2m(G-V_{0}) leq r(G, varphi) leq 2m(G)+b(G)$ holds for any subset $V_0$ of $V(G)$ such that $G-V_0$ is acyclic and $b(G)$ is the minimum integer $|S|$ such that $G-S$ is bipartite for $S subset V(G)$.
A complex unit gain graph (or $mathbb{T}$-gain graph) is a triple $Phi=(G, mathbb{T}, varphi)$ ($(G, varphi)$ for short) consisting of a graph $G$ as the underlying graph of $(G, varphi)$, $mathbb{T}= { z in C:|z|=1 } $ is a subgroup of the multiplic
Let $Phi=(G, varphi)$ be a complex unit gain graph (or $mathbb{T}$-gain graph) and $A(Phi)$ be its adjacency matrix, where $G$ is called the underlying graph of $Phi$. The rank of $Phi$, denoted by $r(Phi)$, is the rank of $A(Phi)$. Denote by $theta(
We establish a lower bound for the energy of a complex unit gain graph in terms of the matching number of its underlying graph, and characterize all the complex unit gain graphs whose energy reaches this bound.
A complex unit gain graph is a graph where each orientation of an edge is given a complex unit, which is the inverse of the complex unit assigned to the opposite orientation. We extend some fundamental concepts from spectral graph theory to complex u
A signed graph $(G, sigma)$ is a graph with a sign attached to each of its edges, where $G$ is the underlying graph of $(G, sigma)$. Let $c(G)$, $alpha(G)$ and $r(G, sigma)$ be the cyclomatic number, the independence number and the rank of the adjace