ترغب بنشر مسار تعليمي؟ اضغط هنا

Oriented Gain Graphs, Line Graphs and Eigenvalues

332   0   0.0 ( 0 )
 نشر من قبل Nathan Reff
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Nathan Reff




اسأل ChatGPT حول البحث

A theory of orientation on gain graphs (voltage graphs) is developed to generalize the notion of orientation on graphs and signed graphs. Using this orientation scheme, the line graph of a gain graph is studied. For a particular family of gain graphs with complex units, matrix properties are established. As with graphs and signed graphs, there is a relationship between the incidence matrix of a complex unit gain graph and the adjacency matrix of the line graph.



قيم البحث

اقرأ أيضاً

Bollobas and Nikiforov [J. Combin. Theory, Ser. B. 97 (2007) 859--865] conjectured the following. If $G$ is a $K_{r+1}$-free graph on at least $r+1$ vertices and $m$ edges, then $lambda^2_1(G)+lambda^2_2(G)leq frac{r-1}{r}cdot2m$, where $lambda_1(G)$ and $lambda_2(G)$ are the largest and the second largest eigenvalues of the adjacency matrix $A(G)$, respectively. In this paper, we confirm the conjecture in the case $r=2$, by using tools from doubly stochastic matrix theory, and also characterize all families of extremal graphs. Motivated by classic theorems due to ErdH{o}s and Nosal respectively, we prove that every non-bipartite graph $G$ of order $n$ and size $m$ contains a triangle, if one of the following is true: (1) $lambda_1(G)geqsqrt{m-1}$ and $G eq C_5cup (n-5)K_1$; and (2) $lambda_1(G)geq lambda_1(S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil}))$ and $G eq S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil})$, where $S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil})$ is obtained from $K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil}$ by subdividing an edge. Both conditions are best possible. We conclude this paper with some open problems.
Let $G_1$ and $G_2$ be two simple connected graphs. The invariant textit{coronal} of graph is used in order to determine the $alpha$-eigenvalues of four different types of graph equations that are $G_1 circ G_2, G_1lozenge G_1$ and the other two`s ar e $G_1 odot G_2$ and $G_1 circleddash G_2$ which are obtained using the $R$-graph of $G_1$. As an application we construct infinitely many pairs of non-isomorphic $alpha$-Isospectral graph.
161 - Simon Griffiths 2011
We show that a number of conditions on oriented graphs, all of which are satisfied with high probability by randomly oriented graphs, are equivalent. These equivalences are similar to those given by Chung, Graham and Wilson in the case of unoriented graphs, and by Chung and Graham in the case of tournaments. Indeed, our main theorem extends to the case of a general underlying graph G the main result of Chung and Graham which corresponds to the case that G is complete. One interesting aspect of these results is that exactly two of the four orientations of a four-cycle can be used for a quasi-randomness condition, i.e., if the number of appearances they make in D is close to the expected number in a random orientation of the same underlying graph, then the same is true for every small oriented graph H
A Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this paper we give some sufficient and necessary conditions for a Neumaier graph to be strongly regular. Further we show that there does not exist Neumaier graphs w ith exactly four distinct eigenvalues. We also determine the Neumaier graphs with smallest eigenvalue -2.
195 - Akihiro Munemasa , Yoshio Sano , 2014
In this paper, we study the characteristic polynomials of the line graphs of generalized Bethe trees. We give an infinite family of such graphs sharing the same smallest eigenvalue. Our family generalizes the family of coronas of complete graphs discovered by Cvetkovic and Stevanovic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا