ترغب بنشر مسار تعليمي؟ اضغط هنا

Could the OPERA setup send a bit of information faster than light?

48   0   0.0 ( 0 )
 نشر من قبل Stefano Lottini Dr.
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that with the current experimental setup of the OPERA neutrino experiment no `bit of information faster than light was or could be sent, and therefore no violation of Lorentz symmetry and/or causality was observed.

قيم البحث

اقرأ أيضاً

Schrodinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called `steering, to require nonlocal wave function collapse. Because this would entail faster-than-light (FTL) information transmission, he doubted that it would be seen experimentally. Here we report a demonstration of EPR steering with entangled photon pairs that puts--in Schrodingers interpretation--a non-zero lower bound on the amount of FTL information transmission. We develop a family of $n$-setting loss-tolerant EPR-steering inequalities allowing for a size-$d$ classical message sent from Alices laboratory to Bobs. For the case $n=3$ and $d=2$ (one bit) we observe a statistically significant violation. Our experiment closes the efficiency and locality loopholes, and we address the freedom-of-choice loophole by using quantum random number generators to independently choose Alices and Bobs measurement basis settings. To close the efficiency and locality loopholes simultaneously, we introduce methods for quickly switching between three mutually unbiased measurement bases and for accurately characterizing the efficiency of detectors. From the space-time arrangement of our experiment, we can conclude that if the mechanism for the observed bipartite correlations is that Alices measurement induces wave-function collapse of Bobs particle, then more than one bit of information must travel from Alice to Bob at more than three times the speed of light.
59 - Barak Shoshany 2019
These lecture notes were prepared for a 25-hour course for advanced undergraduate students participating in Perimeter Institutes Undergraduate Summer Program. The lectures cover some of what is currently known about the possibility of superluminal tr avel and time travel within the context of established science, that is, general relativity and quantum field theory. Previous knowledge of general relativity at the level of a standard undergraduate-level introductory course is recommended, but all the relevant material is included for completion and reference. No previous knowledge of quantum field theory, or anything else beyond the standard undergraduate curriculum, is required. Advanced topics in relativity, such as causal structures, the Raychaudhuri equation, and the energy conditions are presented in detail. Once the required background is covered, concepts related to faster-than-light travel and time travel are discussed. After introducing tachyons in special relativity as a warm-up, exotic spacetime geometries in general relativity such as warp drives and wormholes are discussed and analyzed, including their limitations. Time travel paradoxes are also discussed in detail, including some of their proposed resolutions.
Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a Spatial Light Modulator (SLM), we steer single photons to specific positions in a virtual grid on a larg e-area spatially resolving photon-counting detector (ICCD). We experimentally demonstrate selective addressing any location (symbol) in a 9072 size grid (alphabet) to achieve 10.5 bit of mutual information between the sender and receiver per detected photon. Our results set the stage for very-high-dimensional quantum information processing.
In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/F rCT. Different to the common fractional Fourier transform-based NOFDM (FrFT-NOFDM) signal, FrCT-based NOFDM (FrCT-NOFDM) signal is real-valued which can be directly applied to the VLC systems without the expensive upconversion. Thus, FrCT-NOFDM is more suitable for the cost-sensitive VLC systems. Meanwhile, under the same transmission rate, FrCT-NOFDM signal occupies smaller bandwidth compared to OFDM signal. When the bandwidth compression factor $alpha$ is set to $0.8$, $20%$ bandwidth saving can be obtained. Therefore, FrCT-NOFDM has higher spectral efficiency and suffers less high-frequency distortion compared to OFDM, which benefits the bandwidth-limited VLC systems. As the simulation results show, bit error rate (BER) performance of FrCT-NOFDM with $alpha$ of $0.9$ or $0.8$ is better than that of OFDM. Moreover, FrCT-NOFDM has a superior security performance. In conclusion, FrCT-NOFDM shows great potential for application in the future VLC systems.
106 - Yi-An Ma , Yuansi Chen , Chi Jin 2018
Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these two kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multi-stable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا