ﻻ يوجد ملخص باللغة العربية
Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these two kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multi-stable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.
Adaptive gradient methods have attracted much attention of machine learning communities due to the high efficiency. However their acceleration effect in practice, especially in neural network training, is hard to analyze, theoretically. The huge gap
Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and update
We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in $tilde{O}(n^{4/3}m^{1/2}+n^{2})$ time (The $tilde{O}(cdot)$ notation hides $operatorname{polylog}(n)$ factors). The tree i
The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic
Variational Monte Carlo (VMC) is an approach for computing ground-state wavefunctions that has recently become more powerful due to the introduction of neural network-based wavefunction parametrizations. However, efficiently training neural wavefunct