ﻻ يوجد ملخص باللغة العربية
Fluctuations in systems away from thermal equilibrium have features that have no analog in equilibrium systems. One of such features concerns large rare excursions far from the stable state in the space of dynamical variables. For equilibrium systems, the most probable fluctuational trajectory to a given state is related to the fluctuation-free trajectory back to the stable state by time reversal. This is no longer true for nonequilibrium systems, where the pattern of the most probable trajectories generally displays singularities. Here we study how the singularities emerge as the system is driven away from equilibrium, and whether a driving strength threshold is required for their onset. Using a resonantly modulated oscillator as a model, we identify two distinct scenarios, depending on the speed of the optimal path in thermal equilibrium. If the position away from the stable state along the optimal path grows exponentially in time, the singularities emerge without a threshold. We find the scaling of the location of the singularities as a function of the control parameter. If the growth away from the stable state is faster than exponential, characterized by the ability to reach infinity in finite time, there is a threshold for the onset of singularities, which we study for the model.
Dynamics of a system that performs a large fluctuation to a given state is essentially deterministic: the distribution of fluctuational paths peaks sharply at a certain optimal path along which the system is most likely to move. For the general case
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att
We show that there exist a class of nonequilibrium systems for which a non-equilibrium analog of the Ginzburg-Landau (GL) functional can be constructed and propose the procedure for its derivation. As an example, we consider a small superconductor is
We study transport properties in a slowly driven diffusive system where the transport is externally controlled by a parameter $p$. Three types of behavior are found: For $p<p$ the system is not conducting at all. For intermediate $p$ a finite fractio
We extend the phase field crystal method for nonequilibrium patterning to stochastic systems with external source where transient dynamics is essential. It was shown that at short time scales the system manifests pattern selection processes. These pr