ﻻ يوجد ملخص باللغة العربية
We study transport properties in a slowly driven diffusive system where the transport is externally controlled by a parameter $p$. Three types of behavior are found: For $p<p$ the system is not conducting at all. For intermediate $p$ a finite fraction of the external excitations propagate through the system. Third, in the regime $p>p_c$ the system becomes completely conducting. For all $p>p$ the system exhibits self-organized critical behavior. In the middle of this regime, at $p_c$, the system undergoes a continuous phase transition described by critical exponents.
We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method fo
We study a simple lattice model of shear-induced clustering in two dimensions in which clusters of particles aggregate under an imposed shear flow and fragment stochastically. Two non-equilibrium steady states are identified: an unjammed state and a
We consider bosonic transport through one-dimensional spin systems. Transport is induced by coupling the spin systems to bosonic reservoirs kept at different temperatures. In the limit of weak-coupling between spins and bosons we apply the quantum-op
We consider a large class of two-lane driven diffusive systems in contact with reservoirs at their boundaries and develop a stability analysis as a method to derive the phase diagrams of such systems. We illustrate the method by deriving phase diagra
When an extended system is coupled at its opposite boundaries to two reservoirs at different temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven to a set of current-carrying nonequilibrium states.