ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of a disk structure in the symbiotic binary AX Per during its 2007-10 precursor-type activity

39   0   0.0 ( 0 )
 نشر من قبل Augustin Skopal
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AX Per is an eclipsing symbiotic binary. During active phases, deep narrow minima are observed in its light curve, and the ionization structure in the binary changes significantly. From 2007.5, AX Per entered a new active phase. It was connected with a significant enhancement of the hot star wind. Simultaneously, we identified a variable optically thick warm (Teff ~ 6000 K) source that contributes markedly to the composite spectrum. The source was located at the hot stars equator and has the form of a flared disk, whose outer rim simulates the warm photosphere. The formation of the neutral disk-like zone around the accretor during the active phase was connected with its enhanced wind. We suggested that this connection represents a common origin of the warm pseudophotospheres that are indicated during the active phases of symbiotic stars.

قيم البحث

اقرأ أيضاً

Line profiles containing indication of bipolar collimated outflow along with P Cyg absorption during phase of activity of several symbiotic systems are considered. The Hgamma profile of Z And during its 2006 outburst consisted of four groups of compo nents. The profile of the HeI {lambda} 5876 line of the Hen 3-1341 system during its 1998-2004 outburst had high-velocity satellite components on one hand and a broad P Cyg absorption on other hand. The Halpha and Hbeta profiles of the BF Cyg system during its 2006-2012 outburst had satellite components, observed for the first time, along with P Cyg absorptions. These profiles are interpreted in the light of a model related to the strong recurrent outbursts of Z And. The AG Dra system during its 2006 outburst did not contain indication of collimated outflow. Its profiles are interpreted in the light of the model related to the first outburst of 2000-2012 active phase of Z And.
The optical light of the symbiotic binary BF Cygni during its last eruption after 2006 shows orbital variations because of an eclipse of the outbursting compact object. The first orbital minimum is deeper than the following ones. Moreover, the Balmer profiles of this system acquired additional satellite components indicating bipolar collimated outflow at one time between the first and second orbital minima. This behaviour is interpreted in the framework of the model of collimated stellar wind from the outbursting object. It is supposed that one extended disc-like envelope covering the accretion disc of the compact object and collimating its stellar wind forms in the period between the first and second minima. The uneclipsed part of this envelope is responsible for the decrease of the depth of the orbital minimum. The calculated $UBVR_{C}I_{C}$ fluxes of this uneclipsed part are in agreement with the observed residual of the depths of the first and second orbital minima. The parameters of the envelope require that it is the main emitting region of the line H$alpha$ but the H$alpha$ profile is less determined from its rotation and mostly from other mechanisms. It is concluded that the envelope is a transient nebular region and its destruction determines the increase of the depth of the orbital minimum with fading of the optical light.
SMP LMC 88 is one of the planetary nebulae (PN) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083A. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We ide ntified the cold component to be a K-type giant, making this the first D-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the the orbital variability of Galactic D-type SySt with its low amplitude and sinusoidal lightcurve shape. The SySt classification is also supported by the He I diagnostic diagram.
We present and analyze optical photometry and high resolution SALT spectra of the symbiotic recurrent nova V3890 Sgr at quiescence. The orbital period, P=747.6 days has been derived from both photometric and spectroscopic data. Our double-line spectr oscopic orbits indicate that the mass ratio is q=M_g/M_WD=0.78+/-0.05, and that the component masses are M_WD=1.35+/-0.13 Msun, and M_g=1.05+/-0.11 Msun. The orbit inclination is approximately 67-69 degr. The red giant is filling (or nearly filling) its Roche lobe, and the distance set by its Roche lobe radius, d=9 kpc, is consistent with that resulting from the giant pulsation period. The outburst magnitude of V3890 Sgr is then very similar to those of RNe in the Large Magellanic Cloud. V3890 Sgr shows remarkable photometric and spectroscopic activity between the nova eruptions with timescales similar to those observed in the symbiotic recurrent novae T CrB and RS Oph and Z And-type symbiotic systems. The active source has a double-temperature structure which we have associated with the presence of an accretion disc. The activity would be then caused by changes in the accretion rate. We also provide evidence that V3890 Sgr contains a CO WD accreting at a high, a few 1e-8 - 1e-7 Msun/yr, rate. The WD is growing in mass, and should give rise to a Type Ia supernova within about 1,000,000 yrs - the expected lifetime of the red giant.
We carried out an international spectroscopic observation campaign of the dwarf nova GW Librae (GW Lib) during the 2007 superoutburst. Our observation period covered the rising phase of the superoutburst, maximum, slowly decaying phase (plateau), and long fading tail after the rapid decline from the plateau. The spectral features dramatically changed during the observations. In the rising phase, only absorption lines of H$alpha$, H$beta$, and H$gamma$ were present. Around the maximum, the spectrum showed singly-peaked emission lines of H$alpha$, He I 5876, He I 6678, He II 4686, and C III/N III as well as absorption lines of Balmer components and He I. These emission lines significantly weakened in the latter part of the plateau phase. In the fading tail, all the Balmer lines and He I 6678 were in emission, as observed in quiescence. We find that the center of the H$alpha$ emission component was mostly stable over the whole orbital phase, being consistent with the low inclination of the system. Comparing with the observational results of WZ Sge during the 2001 superoutburst, the same type of stars as GW Lib seen with a high inclination angle, we interpret that the change of the H$alpha$ profile before the fading tail phase is attributed to a photoionized region formed at the outer edge of the accretion disk, irradiated from the white dwarf and inner disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا