ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient accretion disc-like envelope in the symbiotic binary BF Cygni during its 2006 - 2015 optical outburst

334   0   0.0 ( 0 )
 نشر من قبل Mima Tomova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical light of the symbiotic binary BF Cygni during its last eruption after 2006 shows orbital variations because of an eclipse of the outbursting compact object. The first orbital minimum is deeper than the following ones. Moreover, the Balmer profiles of this system acquired additional satellite components indicating bipolar collimated outflow at one time between the first and second orbital minima. This behaviour is interpreted in the framework of the model of collimated stellar wind from the outbursting object. It is supposed that one extended disc-like envelope covering the accretion disc of the compact object and collimating its stellar wind forms in the period between the first and second minima. The uneclipsed part of this envelope is responsible for the decrease of the depth of the orbital minimum. The calculated $UBVR_{C}I_{C}$ fluxes of this uneclipsed part are in agreement with the observed residual of the depths of the first and second orbital minima. The parameters of the envelope require that it is the main emitting region of the line H$alpha$ but the H$alpha$ profile is less determined from its rotation and mostly from other mechanisms. It is concluded that the envelope is a transient nebular region and its destruction determines the increase of the depth of the orbital minimum with fading of the optical light.

قيم البحث

اقرأ أيضاً

97 - S. N. Shore 2010
On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8 and detected by Fermi. Using medium and high resolution ground-based optical spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we describe the beh avior of the high-velocity profile evolution for this nova during its first three months. The peak of the X-ray emission occurred at about day 40 with a broad maximum and decline after day 50. The main changes in the optical spectrum began at around that time. The He II 4686A line first appeared between days 7 and 14 and initially displayed a broad, symmetric profile that is characteristic of all species before day 60. Low-excitation lines remained comparatively narrow, with v(rad,max) of order 200-400 km/s. They were systematically more symmetric than lines such as [Ca V], [Fe VII], [Fe X], and He II, all of which showed a sequence of profile changes going from symmetric to a blue wing similar to that of the low ionization species but with a red wing extended to as high as 600 km/s . The Na I D doublet developed a broad component with similar velocity width to the other low-ionization species. The O VI Raman features were not detected. We interpret these variations as aspherical expansion of the ejecta within the Mira wind. The blue side is from the shock penetrating into the wind while the red wing is from the low-density periphery. The maximum radial velocities obey power laws, v(rad,max) t^{-n} with n ~ 1/3 for red wing and ~0.8 for the blue. (truncated)
The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was th e first detected at $gamma$-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa (severely truncated)
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source , observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200--1250 GeV, is 4.8$times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$. We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404,Cyg jets if VHE emitter is located further than $1times 10^{10}$ cm from the compact object.
156 - L. Mosoni , N. Sipos , P. Abraham 2013
Context: It is hypothesized that low-mass young stellar objects undergo eruptive phases during their early evolution. The outburst of V1647 Ori between 2003 and 2006 offered a rare opportunity to investigate such an accretion event. Aims: By means of our interferometry observing campaign during this outburst, supplemented by other observations, we investigate the temporal evolution of the inner circumstellar structure of V1647 Ori We also study the role of the changing extinction in the brightening of the object and separate it from the accretional brightening. Methods: We observed V1647 Ori with MIDI/VLTI at two epochs in this outburst. First, during the slowly fading plateau phase (2005 March) and second, just before the rapid fading of the object (2005 September), which ended the outburst. We used the radiative transfer code MC3D to fit the interferometry data and the spectral energy distributions from five different epochs at different stages of the outburst. The comparison of these models allowed us to trace structural changes in the system on AU-scales. We also considered qualitative alternatives for the interpretation of our data. Results: We found that the disk and the envelope are similar to those of non-eruptive young stars and that the accretion rate varied during the outburst. We also found evidence for the increase of the inner radii of the circumstellar disk and envelope at the beginning of the outburst. Furthermore, the change of the interferometric visibilities indicates structural changes in the circumstellar material. We test a few scenarios to interpret these data. We also speculate that the changes are caused by the fading of the central source, which is not immediately followed by the fading of the outer regions. However, if the delay in the fading of the disk is responsible for the changes seen in the MIDI data, the effect should be confirmed by dynamical modeling.
78 - A. Loh , S. Corbel , G. Dubus 2016
We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of $gamma$-ray emission on 26 June 2015, with a very s oft spectrum above $100$ MeV, at a position consistent with the direction of V404 Cyg (within the $95%$ confidence region and a chance probability of $4 times 10^{-4}$). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the $gamma$-ray emission is associated with V404 Cyg, the simultaneous detection of $511,$keV annihilation emission by INTEGRAL requires that the high-energy $gamma$ rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright $gamma$-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا