ترغب بنشر مسار تعليمي؟ اضغط هنا

Symbiotic Stars with Similar Line Profiles during Activity

291   0   0.0 ( 0 )
 نشر من قبل Mima Tomova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Line profiles containing indication of bipolar collimated outflow along with P Cyg absorption during phase of activity of several symbiotic systems are considered. The Hgamma profile of Z And during its 2006 outburst consisted of four groups of components. The profile of the HeI {lambda} 5876 line of the Hen 3-1341 system during its 1998-2004 outburst had high-velocity satellite components on one hand and a broad P Cyg absorption on other hand. The Halpha and Hbeta profiles of the BF Cyg system during its 2006-2012 outburst had satellite components, observed for the first time, along with P Cyg absorptions. These profiles are interpreted in the light of a model related to the strong recurrent outbursts of Z And. The AG Dra system during its 2006 outburst did not contain indication of collimated outflow. Its profiles are interpreted in the light of the model related to the first outburst of 2000-2012 active phase of Z And.


قيم البحث

اقرأ أيضاً

72 - Ulisse Munari 2019
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known syst ems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
During solar flares, magnetic energy can be converted into electromagnetic radiation from radio waves to $gamma$ rays. Enhancements in the continuum at visible wavelengths give rise to white-light flares, as well as continuum enhancements in the FUV and NUV passbands. In addition, the strong energy release in these events can lead to the rearrangement of the magnetic field at the photospheric level, causing morphological changes in large and stable magnetic structures like sunspots. In this context, we describe observations acquired by satellite instruments (IRIS, SDO/HMI, Hinode/SOT) and ground-based telescopes (ROSA/DST) during two consecutive C7.0 and X1.6 flares occurred in active region NOAA 12205 on 2014 November 7. The flare was accompanied by an eruption. The results of the analysis show the presence of continuum enhancements during the evolution of the events, observed both in ROSA images and in textit{IRIS} spectra. In the latter, a prominent blue-shifted component is observed at the onset of the eruption. We investigate the role played by the evolution of the $delta$ sunspots of the active region in the flare triggering, and finally we discuss the changes in the penumbrae surrounding these sunspots as a further consequence of these flares.
APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the tot al number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symb iotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic star.............
We present new multicolour UBVRcIc photometric observations of symbiotic stars, EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, RS Oph, AG Peg, AX Per, and the newly discovered (August 2018) symbiotic star HBHA 1704-05, we carrie d out during the period from 2011.9 to 2018.75. Historical photographic and visual/V data were collected for HBHA 1704-05, FG Ser and AE Ara, AR Pav, respectively. The main aim of this paper is to present our original observations of symbiotic stars and to describe the most interesting features of their light curves. For example, periodic variations, rapid variability, minima, eclipses, outbursts, apparent changes of the orbital period, etc. Our measurements were obtained by the classical photoelectric photometry (till 2016.1) and the CCD photometry. Main results of our monitoring program are summarized and some specific characteristics are pointed out for future investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا