ﻻ يوجد ملخص باللغة العربية
We present a renormalizable flavor model with Z_4 as flavor symmetry in both the quark and lepton sectors. The model is constructed with a minimal approach and no-right handed neutrinos are introduced. In this approach a minimum number of two SU(2) Higgs doublets and one scalar singlet are required in order to obtain the Nearest Neighbor Interaction form for charged fermions and to generate neutrino masses radiatively. For the quark sector we follow the charge assignations made by Branco et. al. in reference [1]. All fermion masses and mixing angles in the model are in agreement with current experimental data and only the inverted hierarchy for the neutrino mass spectrum is allowed. Since neutrinos are Majorana the contribution to neutrinoless double beta decay is also analyzed.
A new model for tiny neutrino masses is proposed in the gauge theory of $SU(3)_C otimes SU(3)_L otimes U(1)_X$, where neutrino masses are generated via the quantum effect of new particles. In this model, the fermion content is taken to be minimal to
Randall Sundrum models provide a possible explanation of (gauge-gravity) hierarchy, whereas discrete symmetry flavor groups yield a possible description of the texture of Standard Model fermion masses. We use both these ingredients to propose a five-
We revisit the current experimental bounds on fourth-generation Majorana neutrino masses, including the effects of right handed neutrinos. Current bounds from LEPII are significantly altered by a global analysis. We show that the current bounds on fo
We construct a multiscalar and nonrenormalizable $B-L$ model with $A_4times Z_3times Z_4$ flavor symmetry which successfully explains the recent $3+1$ active-sterile neutrino data. The tiny neutrino mass the mass hierarchy are obtained by the type-I
In the framework of a left-right model containing mirror fermions with gauge group SU(3)$_{C} otimes SU(2)_{L} otimes SU(2)_{R} otimes U(1)_{Y^prime}$, we estimate the neutrino masses, which are found to be consistent with their experimental bounds a